Final

Third Quarter 2010 Remediation Progress Report Defense Fuel Support Point Norwalk, California

Prepared for

Kinder Morgan Energy Partners, L.P.

1100 Town & Country Road Orange, California 92868

October 15, 2010

6 Hutton Centre Drive, Suite 700 Santa Ana, California 92707

Signature Page

The material and data presented in this report were prepared consistent with current and generally accepted consulting principles and practices. This work was supervised by the following CH2M HILL licensed professional.

Mart. Watt

10/15/2010

Mark Wuttig **V** CH2M HILL California Professional Geologist, No. 6820 Date

Contents

Section

Page

Acron	yms and Abbreviations	III
1.	Introduction	1-1
2.	Remediation Systems	2-1
3.	Operations and Maintenance	
4.	Summary of Remediation Progress	4-1
5.	System Evaluation and Optimization	5-1
6.	Planned Fourth Quarter 2010 Activities	6-1
7.	References	7-1

Appendix

A Laboratory Analytical Reports

Tables

- 1 Remediation Well Construction and Status
- 2 Vapor Remediation System Operation Summary
- 3 Groundwater Remediation System Operation Summary
- 4 Extracted Vapor Analytical Results
- 5 Extracted Groundwater Analytical Results
- 6 Remediation Well Vapor Concentrations
- 7 Groundwater and Product Measurements and Elevations for Total Fluids, Groundwater, and Soil Vapor Extraction Wells

Figures

- 1 Site Location Map
- 2 Remediation System Layout

Acronyms and Abbreviations

µg/L	micrograms per liter
1,2-DCA	1,2-dichloroethane
ASTM	American Society for Testing and Materials
Calscience	Calscience Environmental Laboratories, Inc.
DFSP	Defense Fuel Support Point
DPE	dual-phase extraction
EPA	United States Environmental Protection Agency
Geomatrix	Geomatrix Consultants, Inc.
GWE	groundwater extraction
KMEP	Kinder Morgan Energy Partners, L.P.
LGAC	liquid-phase granular activated carbon
MTBE	methyl tertiary butyl ether
NPDES	National Pollutant Discharge Elimination System
O&M	operations and maintenance
PID	photoionization detector
ppmv	parts per million by volume
RBCA	Risk-Based Corrective Action
RWQCB	California Regional Water Quality Control Board, Los Angeles Region
SCAQMD	South Coast Air Quality Management District
Second Addendum	Second Addendum to the Remedial Action Plan, November 30, 2006
SFPP	SFPP, L.P.
SVE	soil vapor extraction
TFE	total fluids extraction
TPH-fp	total petroleum hydrocarbons characterized as fuel products
TPH-g	total petroleum hydrocarbons quantified as gasoline
VOC	volatile organic compound
WSB	West Side Barrier

1. Introduction

CH2M HILL has prepared this report on behalf of SFPP, L.P. (SFPP), an operating partnership of Kinder Morgan Energy Partners, L.P. (KMEP), to summarize remediation activities performed at the Defense Fuel Support Point (DFSP) located at 15306 Norwalk Boulevard, Norwalk, California (the site; Figure 1) during the third quarter 2010 reporting period.

This progress report is submitted pursuant to a request from the California Regional Water Quality Control Board, Los Angeles Region (RWQCB) in its letter dated October 25, 2006 (RWQCB, 2006), and in accordance with the Second Addendum to the Remedial Action Plan (Second Addendum) dated November 30, 2006 (Geomatrix Consultants, Inc. [Geomatrix], 2006). Implementation of the Second Addendum was approved by the RWQCB on April 2, 2007. Additional background information can be found in the Second Addendum and in previously submitted semiannual groundwater monitoring reports for the site.

This report summarizes the remediation systems present at the site and describes implementation of the Second Addendum for the period July through September 2010 with documentation of the following tasks:

- Operations and maintenance (O&M) of remediation systems performed by SFPP field personnel
- Remediation system evaluation

The remediation activities performed during July through September 2010 and the progress achieved through those activities are summarized in the following sections.

SFPP currently operates remediation systems consisting of soil vapor extraction (SVE), total fluids extraction (TFE; extraction of free product and/or groundwater using a top-loading pump), groundwater extraction (GWE; extraction of groundwater using a bottom-loading pump), and treatment of extracted soil vapors and groundwater to address two specific areas at and near the site: the south-central area and the southeastern area. Operation of the West Side Barrier groundwater extraction system (WSB system) for remediation of the western offsite area was discontinued in August 2008. During the second quarter 2010, two WSB wells were temporarily operated to control the selenium concentration in extracted groundwater as discussed in the Selenium Management Evaluation Update submitted to the RWQCB on June 10, 2010. Blending of extracted groundwater from the WSB system with groundwater from the south-central and southeastern areas was discontinued on June 22, 2010.

Remediation in the south-central and southeastern areas consists of SVE and TFE (GWE is also performed at two well locations in the south-central area). At several well locations, SVE is coupled with TFE (or GWE at two locations) in a process referred to as dual-phase extraction (DPE). SVE is performed using a blower to remove soil vapors from the southcentral and southeastern areas. The extracted vapors are conveyed to a knock-out tank that separates entrained moisture from the soil vapors. Accumulated moisture in the knock-out tank is treated by the main groundwater treatment system described below. The soil vapors are then preheated in a heat exchanger and treated in a catalytic oxidizer where volatile organic compounds (VOCs) are converted to carbon dioxide and water prior to being discharged to the atmosphere. Operation of the SVE and treatment system is conducted in accordance with Permit to Operate No. F13759 issued by the South Coast Air Quality Management District (SCAQMD).

The main groundwater treatment system handles free product and groundwater recovered from the south-central and southeastern parts of the site. Free product and groundwater recovered by pneumatically operated top-loading total fluids pumps and bottom-loading groundwater pumps are piped to an oil-water separator. Free product, if any, from the oil-water separator is collected in a storage tank and recycled at an offsite location. Water from the oil-water separator is treated using liquid-phase granular activated carbon (LGAC). Treated water is routed through an onsite 8,000-gallon effluent storage tank prior to discharge in accordance with a National Pollutant Discharge Elimination System (NPDES) permit (NPDES No. CA0063509, CI No. 7497).

A summary of remediation wells in the south-central, southeastern, and WSB areas is presented in Table 1. Table 1 includes well identifications, well construction details, well use, and operational status at the end of the third quarter 2010. The remediation system layout is presented in Figure 2.

3. Operations and Maintenance

Tasks performed for O&M of the remediation systems during the reporting period included:

- Weekly maintenance and monitoring of the south-central and southeastern SVE, TFE/GWE, and soil vapor and groundwater treatment systems (collectively referred to as remediation systems)
- Inspection of GWE pumps
- Measurements of individual well vapor concentrations
- Collection and analysis of system influent vapor and groundwater samples
- Gauging of selected remediation wells
- Troubleshooting of the SVE system

In addition, system effluent vapor and water samples were collected and analyzed for compliance with the SCAQMD and NPDES permits. The effluent water sampling results will be provided under separate cover in the NPDES effluent monitoring report for the third quarter 2010 period.

During this reporting period, remediation system inspections were performed on a weekly basis. For these inspections, vapor flow rate, vacuum, volumes of extracted groundwater, hours of operation, and other system parameters were recorded during system operation. Remediation system operation activities for the third quarter 2010 are summarized in Tables 2 and 3. The remediation systems operated during the third quarter 2010 with the following exceptions.

- On July 9, 2010, the TFE/GWE system was shut down for routine carbon change-out. It was restarted on the same day.
- On July 20, 2010, the TFE/GWE system was shut down due to high-level alarms for the transfer tank. The bag filters were clogged and replaced.
- On August 18, 2010, the TFE/GWE system was shut down due to extracted groundwater flowing out of the transfer tank and onto the treatment pad. The water was contained and did not leave the treatment pad. The high-level float switch on the transfer tank malfunctioned and was replaced on August 19, 2010.
- On August 24, 2010, the remediation system was shut down to replace the power source of the system from the generator to the main power house at the site.
- The SVE system was shut down from June 29, 2010, to August 3, 2010, to troubleshoot the high-temperature and no-flame alarms that occurred at the end of the second quarter. On August 6, 2010, the SVE system was shut down due to a tripped circuit breaker. The circuit breaker was reset and the SVE system restarted. On August 10, 2010, the SVE system was shut down due to a high-temperature alarm. The SVE system

remained off for further troubleshooting. On August 31, 2010, the system was restarted temporarily to collect vapor samples at different points of the SVE system.

- On September 1, 2010, the SVE system was turned on and back online. However, on September 3 and 10, 2010, the SVE system was shut down due to a high-temperature alarm. The SVE system was reset and restarted within the same day.
- On September 7, 2010, the SVE system was shut down to replace the dilution and process valves and clean the catalytic oxidizer beds. The system was restarted on the same day.
- On September 21, 2010, the SVE system was shut down to replace and attach the linkage to the actuator, dilution valve, and process valves. The system was restarted on the same day.
- On September 27, 2010, the remediation system was off due to a city-wide power outage. The systems were shut down for the remainder of the week to allow groundwater levels to reach static conditions prior to the second semiannual groundwater sampling event, scheduled for early October 2010.

Overall, during third quarter 2010, the SVE system operated approximately 20 percent of the time while the TFE/GWE system operated approximately 96 percent of the time.

Vapor samples from the SVE system influent and water samples from TFE/GWE system influent were collected during the third quarter 2010 when the systems were in operation. During the third quarter 2010, influent vapor samples were collected on August 3, August 31, and September 14, 2010, when the SVE system was operating. Influent water samples were collected on July 20, August 3, August 10, and September 14, 2010, when the TFE/GWE systems were operating. The vapor and water samples were delivered to Calscience Environmental Laboratories, Inc. (Calscience), a laboratory certified by the California Department of Public Health Environmental Laboratory Accreditation Program, for analysis. Calscience analyzed the vapor samples for the following:

- Fixed gases (methane, carbon dioxide, oxygen, and argon) using American Society for Testing and Materials (ASTM) D-1946 and SCAQMD 25.1M
- Total petroleum hydrocarbons quantified as gasoline (TPH-g) using United States Environmental Protection Agency (EPA) Method TO-3
- VOCs using EPA Method TO-15

Calscience analyzed the water samples for the following:

- TPH-g and TPH characterized as fuel products (TPH-fp) using EPA Method 8015(M)
- VOCs using EPA Method 8260B

Analytical results for the influent vapor and water samples are summarized in Tables 4 and 5, respectively. The laboratory analytical reports and chain-of-custody documents for these samples are included in Appendix A.

VOC concentrations in vapors extracted from individual SVE wells were measured in the field using a photoionization detector (PID) calibrated using 50 parts per million by volume (ppmv) of hexane. The individual well vapor readings are summarized in Table 6. Depths to product and groundwater were measured to the nearest 0.01 foot from the top of the well casing using an interface probe in selected wells. The gauging results are summarized in Table 7.

In addition, groundwater, system water influent, and system water effluent samples were sent to the following laboratories during the third quarter 2010 for further analysis of total selenium, dissolved selenium, and selenium speciation:

- Applied Speciation and Consulting, LLC
- Advanced Technology Laboratories
- Alpha Analytical, Inc.
- TestAmerica Laboratories, Inc.

The purpose of these additional analyses was to assess whether historical concentrations of selenium in NPDES discharge compliance samples analyzed by Calscience actually exceeded the NPDES discharge limits for selenium. The results of this additional sampling and analysis to assess selenium concentrations will be provided in a future letter to the RWQCB.

Based on weekly monitoring of the influent vapor concentration, vapor extraction flow rate, and hours of operation, the total mass of VOCs removed by SVE was approximately 104 pounds during the third quarter of 2010, for a cumulative mass removal of approximately 19,735 pounds since implementing the Second Addendum system upgrades, and over 3 million pounds since the SVE system began operation in 1995. The cumulative mass removed by SVE does not include the mass removed by biodegradation.

Approximately 1,543,274 gallons of groundwater was extracted during the third quarter 2010. This total includes approximately 736,007 gallons of water from the south-central area and 807,267 gallons of water from the southeastern area. No water was extracted from the WSB area.

Groundwater extraction was discontinued in the WSB region during the third quarter 2008 based on the reduced lateral extent and low concentrations of methyl tertiary butyl ether (MTBE) and 1,2-dichloroethane (1,2-DCA) west of the site. Detected concentrations of MTBE and 1,2-DCA in wells west of the site have been below the conservative, site-specific, Risk-Based Corrective Action (RBCA) goals (Geomatrix, 1999) since August 2005. The lower (more conservative) RBCA goals for MTBE and 1,2-DCA are 40 micrograms per liter (μ g/L) and 70 μ g/L, respectively. 1,2-DCA and MTBE concentrations in the western area continue to be monitored; other wells in the WSB system will be restarted if necessary.

Removal of free product using TFE continued during the third quarter 2010. Because the amount of free product removed by TFE was significantly less than the volume of groundwater extracted, free product was emulsified in the relatively larger volume of groundwater extracted and was not observed to accumulate in the product holding tank of the groundwater treatment system. Therefore, the amount of free product removed by TFE was not estimated.

Based on the TPH-g results for influent water samples and total groundwater extracted, the mass of TPH-g removed by TFE and GWE in the south-central and southeastern areas was approximately 119 pounds during the third quarter 2010, for a cumulative mass removed from these areas of approximately 1,117 pounds since implementing the system upgrades described in the Second Addendum. TPH-fp also was detected in the influent water samples; however, TPH-fp results were not used to calculate mass removal for dissolved petroleum hydrocarbons because the ranges of hydrocarbons for TPH-g and TPH-fp overlap. Because the non-overlapping portion of the TPH-fp range was not used in the mass removal calculation, and the amount of free product removed by TFE was not estimated, the total mass of petroleum hydrocarbons removed by TFE may be underestimated.

For the SVE treatment system, during the third quarter 2010, vapor-phase VOC concentrations were measured in individual wells using a PID on September 17, 2010, as shown in Table 6. The operation status of the SVE wells at the end of the third quarter 2010 is also shown on Table 6. Because PID readings recorded on September 17, 2010, indicate VOC concentrations are close to or higher than 100 ppmv in several SVE wells, the SVE system will be operated until influent VOC concentrations reach low asymptotic levels.

Groundwater monitoring in the WSB region during the third quarter 2010 supports the continued shutdown of GWE in the region. 1,2-DCA and MTBE concentrations in the western area continue to be monitored; the WSB system will be restarted if necessary.

As shown in Table 7, groundwater elevations and product thicknesses in the south-central area have generally decreased since implementing the Second Addendum. During the third quarter 2010, free product was detected in three remediation wells. TFE will continue to be performed in areas with remaining free product. Selected remediation wells will continue to be monitored quarterly to assess remediation performance; remediation pump settings will be adjusted accordingly to optimize free product recovery and enhance hydraulic control of dissolved plumes.

The systems currently consist of 20 wells operated for product recovery and hydraulic control in the south-central part of the site (including 18 wells operated for TFE and two wells operated for GWE), and 3 wells equipped with TFE pumps operated for product recovery and hydraulic control in the southeastern part of the site (Table 1). Currently (at the end of the third quarter 2010), there are nine TFE/GWE wells online from the south-central area (GMW-O-11, GMW-22, MW-O-2, MW-SF-11, MW-SF-12, MW-SF-13, MW-SF-14, MW-SF-15, and MW-SF-16) and three wells online from the southeastern area (GMW-O-15, GMW-O-18, and GMW-36). Wells MW-SF-3 and MW-SF-24 also are anticipated to be online during the fourth quarter 2010 after further troubleshooting of the pumps is complete. Additional extraction wells may be brought online during the fourth quarter 2010 as necessary.

During the fourth quarter 2010, SFPP plans to continue to focus remedial efforts on the south-central and southeastern areas. Concentrations of 1,2 DCA and MTBE in the western area will continue to be monitored; the WSB system will be restarted if necessary. The TFE, GWE, and SVE systems for the south-central and southeastern areas will continue to operate. Operation of the TFE system in the southeastern area will be monitored closely and adjustments will be made to improve fluid recovery. System inspections will continue on a weekly basis; system evaluation parameters will be collected as needed. The remediation activities and progress for the fourth quarter 2010 will be described in the fourth quarter 2010 remediation progress report to be submitted by January 15, 2010.

- AMEC. 2010a. Letter to Mr. Paul Cho, California Regional Water Quality Control Board. Selenium Management Evaluation Update, Defense Fuel Support Point Norwalk. June 10.
- AMEC. 2010b. Remediation Progress Report, Second Quarter 2010, Defense Fuel Support Point Norwalk. July 15.
- California Regional Water Quality Control Board, Los Angeles Region. 2006. Letter to Mr. Kola Olowu, Defense Energy Support Center, Los Angeles, and Mr. Michael Pitta, Kinder Morgan Energy Partners; Conditional Approval of Revised Remedial Action Plan and Second Addendum to Remedial Action Plan for the Defense Fuel Support Point Norwalk, 15306 Norwalk Boulevard, Norwalk (SLIC No. 0286A, DOD No. 16638). October 25.
- Geomatrix Consultants, Inc. 1999. *Risk-Based Corrective Action, Western 1,2-DCA and MTBE Plumes*. February.
- Geomatrix Consultants, Inc. 2006. Second Addendum to Remedial Action Plan, Defense Fuel Support Point Norwalk, Norwalk, California. November 30.
- Kinder Morgan Energy Partners. 2010. Letter to Mr. Paul Cho, California Regional Water Quality Control Board. Transmittal of Selenium Management Summary Report for the SFPP, L.P. Norwalk Station, 15306 Norwalk Boulevard, Norwalk, California. April 1.

Tables

TABLE 1 **Remediation Well Construction and Status**

SFPP, L.P.

Defense Fuel Support Point Norwalk

Norwalk, California

Remediation Area	Remediation Well ID	Installation Date	Top of Well Casing Elevation	Well Screen Interval	Remediation Well Function	Well Operation Status at End of Third Quarter
			(ft msl)	(ft bgs)		2010 ⁻
	MW-SF-1	6/18/1990	78.93	25 - 40	SVE	OFF
	MW-SF-2	6/18/1990	78.53	25 - 40	SVE; TFE	OFF; OFF
	MW-SF-3	6/18/1990	78.12	25 - 40	SVE; TFE	ON; OFF
	MW-SF-4	6/19/1990	79.38	25 - 40	SVE	OFF
	MW-SF-5	9/19/1990	79.74	23 - 38	SVE	OFF
	MW-SF-6	9/19/1990	76.80	25 - 40	SVE; TFE	OFF; OFF
	MW-SF-9	6/15/1995	74.10		SVE	OFF
	MW-SF-10	9/23/2003	76.53	10 - 30	SVE	ON
	MW-SF-11	6/19/2007	78.56	20 - 40	SVE; TFE	OFF; ON
	MW-SF-12	6/18/2007	78.07	20 - 40	SVE; TFE	ON; ON
	MW-SF-13	6/19/2007	73.40	20 - 40	SVE; TFE	OFF; ON
	MW-SF-14	6/21/2007	78.16	20 - 40	SVE; TFE	OFF; ON
	MW-SF-15	6/21/2007	78.27	20 - 40	SVE; TFE	ON; ON
	MW-SF-16	6/20/2007	78.21	20 - 40	SVE; TFE	ON; ON
	GMW-9	7/8/1991	74.44	20 - 50	SVE; TFE	OFF; OFF
South-Central	GMW-10	7/8/1991	74.67	25 - 50	SVE	OFF
	GMW-22	8/2/1991	/4.1/	25 - 60	SVE; TFE	OFF; ON
	GMW-24	8/5/1991	74.04	25 - 60	SVE; TFE	OFF; OFF
	GMW-25	1/10/1992	74.29	20 - 50	SVE; GWE	OFF; OFF
	GWR-3	1/10/1992	74.93	20 - 50	SVE; GWE	ON; OFF
	VEW-1				SVE	ON
	VEW-2				SVE	ON
	MW-O-1	1/22/1991	75.48	25 - 40	SVE; TFE	ON; OFF
	MW-0-2	1/23/1991	/1.90	25 - 40	SVE; TFE	ON; ON
	GMW-O-11	5/20/1992	74.17	20 - 50	SVE; TFE	ON; ON
	GMW-O-12	5/21/1992	73.49	20 - 50	SVE	ON
	GMW-O-20	6/15/1995	73.32		SVE; TFE	ON; OFF
	GMW-O-21	10/1/1997	71.43	26 - 46	TFE	OFF
	GMW-O-23	6/25/2007	73.63	20 - 40	SVE; TFE	ON; OFF
	MW-18 (MID)	6/10/1991	75.67	50 - 60	SVE	OFF
	HVV-2				SVE	OFF
	GMW-O-15	4/19/1994	74.23	20 - 50	SVE; TFE	ON; ON
	GMW-O-18	7/25/1994	74.36	21 - 40	SVE; TFE	ON; ON
Southeastern	GMW-36	4/11/1994	74.53	20 - 50	TFE	ON
	GMW-SF-9	4/1/2003	73.00	37 - 46	GWE	OFF
	GMW-SF-10	4/2/2003	/5.//	37 - 46	GWE	OFF
	BW-2	5/20/1996	73.57	27 - 47	GWE	OFF
	BM-3	5/17/1996	74.16	31 - 50	GWE	OFF
	BW-4	5/20/1996	74.61	28 - 47	GWE	OFF
West Side	BW-5	5/23/1996	73.59	27 - 46	GWE	OFF
Barrier	BW-6	5/22/1996	73.48	28 - 47	GWE	OFF
	BW-7	5/22/1996	74.65	27 - 46	GWE	OFF
	BW-8	5/21/1996	75.08	27 - 46	GWE	OFF
	BW-9	5/21/1996	76.19	27 - 46	GWE	OFF

Notes 1. The well operations listed correspond to the well functions indicated in the previous column. Based on information provided by SFPP, L.P.

Abbreviations

-- = information not available

ft msl = feet above mean sea level based on the National Geodetic Vertical Datum of 1929.

ft bgs = feet below ground surface

GWE = groundwater extraction

SVE = soil vapor extraction

TFE = total fluids extraction

Vapor Remediation System Operation Summary

SFPP, L.P.

Defense Fuel Support Point Norwalk

Norwalk, California

System Inspection Date	Cumulative Hours of Operation (hours)	Incremental Hours of Operation (hours)	Influent TPH-g Concentration (ppmv)1	Influent FID or PID Reading (ppmv as hexane)	System Flow (scfm)	Header Vacuum ("H ₂ O)	Mass Removed (pounds) ²
2007 Totals ³	58,319	2,058					3,742
2008 Totals	64,233	5,915					5,878
2009 Totals	68,858	4,625		-			9,387
First Quarter 2010 Totals	70,038	1,180		-		-	144
Second Quarter 2010 Totals	71,268	1,230		-			480
07/07/10	71,267.8	0.0					
08/03/10	71,274.0	6.2	29	63	1,890	30	11
08/31/10	71,327.5	53.5	11	27	1,669	20	36
09/08/10	71,355.2	27.7		84	864	10	30
09/14/10	71,496.9	141.7	6	10	339	30	7
09/24/10	71,660.8	163.9		23	359	25	20
Third Quarter 2010 Totals	71,661	393					104
Cumulative Mass Removed Sir	nce Implementati	on of RAP Upgra	ades⁴				19,735

Notes

1. The TPH-g concentration reflects analytical results for vapor samples collected from the influent of the Vapor Remediation System.

Refer to Table 4 for a summary of analytical results for influent vapor samples.

2. The total mass removed is based on influent FID or PID readings, hours of operation, and flow rate.

3. The 2007 total includes only operation after upgrades were made to the South-Central system.

4. Upgrades to the South-Central system are described in the Second Addendum to Remedial Action Plan.

Data reported based on information provided by SFPP, L.P.

Abbreviations TPH-g = total petroleum hydrocarbons as gasoline (C4-C12)

ppmv = parts per million by volume

FID = flame ionization detector

PID = photo ionization detector

scfm = standard cubic feet per minute

 H_20 = inches of water

-- = not applicable or not available

Groundwater Remediation System Operation Summary

SFPP, L.P.

Defense Fuel Support Point Norwalk

Norwalk, California

System Inspection Date	Groundwater Removed from the South-Central Area (gallons)	Groundwater Removed from the Southeastern Area (gallons)	Groundwater Removed from the West Side Barrier Area (gallons)	Influent TPH-g Concentration (μg/L) ¹	TPH-g Removed from the South-Central, Southeastern, and West Side Barrier Areas (pounds) ²
2007 Totals ³	2,080,762	529,411	630,877		395
2008 Totals	5,391,860	700,882	405,954 ⁴		311
2009 Totals	8,044,836	770,869	0		161
First Quarter 2010 Totals	739,900	193,233	0		58
Second Quarter 2010 Totals	791,007	285,776	2,244		73
07/02/10	18,221	24,548	0	4,600	1.64
07/07/10	5,406	42,729	0	4,600	1.84
07/09/10	1,815	16,382	0	4,600	0.70
07/13/10	3,621	33,944	0	4,600	1.44
07/16/10	2,562	25,183	0	4,600	1.06
07/20/10	4,918	25,575	0	21,000	5.33
07/23/10	30,233	37,982	0	21,000	11.91
07/27/10	101,481	33,839	0	21,000	23.63
07/30/10	70,250	23,704	0	21,000	16.41
08/03/10	95,925	32,935	0	3,400	3.64
08/06/10	69,695	23,815	0	3,400	2.64
08/10/10	11,225	31,500	0	5,800	2.06
08/12/10	7,654	16,359	0	5,800	1.16
08/17/10	18,327	39,604	0	5,800	2.79
08/19/10	1,719	4,105	0	5,800	0.28
08/20/10	2,256	7,682	0	5,800	0.48
08/24/10	9,214	29,865	0	5,800	1.88
08/27/10	n/a ⁶	52,847	0	5,800	2.55
08/31/10	74,067	31,975	0	5,800	5.11
09/03/10	31,642	23,297	0	5,800	2.65
09/08/10	54,573	40,168	0	5,800	4.57
09/10/10	16,686	15,447	0	5,800	1.55
09/14/10	29,093	31,943	0	9,400	4.77
09/17/10	28,347	24,033	0	9,400	4.09
09/21/10	19,839	39,946	0	9,400	4.67
09/24/10	n/a ⁶	81,766	0	9,400	6.39
09/27/10	27,238	16,094	0	9,400	3.39
Third Quarter 2010 Totals	736,007	807,267	0		119
Cumulative TPH-g Removed Sin	ce Implementation of R	AP Upgrades ⁵			1 117

Notes

1. The TPH-g concentration reflects analytical results for samples collected from the influent of the Total Fluids Extractions (TFE)

system that extracts groundwater from the south-central, southeastern, and West Side Barrier areas. Refer to Table 5 for a summary of analytical results for the groundwater samples. For a given period, the most recent analytical result available is used to calculate TPH-g removed.

2. The mass of TPH-g removed (pounds) is based on concentrations of dissolved TPH-g in the most recent TFE system influent samples and the volume of groundwater extracted by TFE. Total petroleum hydrocarbons characterized as fuel products (TPH-fp) also were detected in the TFE system influent samples (see Table 5) but were not used in estimating the mass of petroleum hydrocarbons removed from groundwater.

3. The 2007 total includes only operation after upgrades were made to the south-central system.

4. Groundwater removal in the West Side Barrier Area was discontinued in August, 2008. Groundwater extraction from West Side Barrier Area wells BW-3 and BW-6 was resumed on May 14, 2010 to evaluate the efficacy of blending water with lower-selenium-concentrations from these wells with groundwater extracted from the south-central and southeastern areas. Groundwater removal from the West Side Barrier area was discontinued again on June 22, 2010.

5. Upgrades to the south-central remediation system are described in the Second Addendum to Remedial Action Plan.

6. No data due to totalizer malfunction.

Data reported based on information provided by SFPP, L.P.

Abbreviations

TPH-g = total petroleum hydrocarbons as gasoline (C4-C12).

µg/L = micrograms per liter

TABLE 4 Extracted Vapor Analytical Results¹

SFPP, L.P. Defense Fuel Support Point Norwalk Norwalk, California

	Total Fluids	A	STM D-194	46	EPA TO-3 EPA TO-15 (VOCs) ²					
Date Sampled	Extraction System Status	Methane	Carbon Dioxide	Oxygen & Argon	TPH-g	Benzene	Ethylbenzene	Toluene	Xylenes	MTBE
9/2/2007		(%V)	(%V)	(%V)	(ppmv)	(vaqq)	(vaqq)	(vaqq)	(ppbv)	(vaqq)
8/3/2007		<0.5°	<0.5	22.0	63	000	220	1,100	1,420	55
9/5/2007	OFF	<0.5	<0.5	22.0	9	32	48	140	320	18
10/2/2007	ON	<0.5	<0.5	21.9	27	250	75	430	610	20
11/2/2007	ON	<0.5	<0.5	22.1	5	40	10	74	95	7
2/1/2008	ON	<0.5	<0.5	21.8	100	830	260	2,200	1,850	<50
3/4/2008	ON	<0.5	<0.5	21.7	50	380	98	570	1,250	36
4/8/2008	OFF	<0.5	<0.5	22.2	69	290	110	480	1,040	41
5/23/2008	OFF	<0.5	<0.5	21.8	14	180	24	190	280	23
6/3/2008	OFF	<0.5	<0.5	21.7	30	380	42	400	330	70
7/2/2008	ON	<0.5	<0.5	21.4	49	32	6	34	45	10
8/19/2008	ON	<0.5	1.7	20.8	50	390	63	230	450	40
9/5/2008	ON	<0.5	2.0	21.2	22	130	39	130	340	42
10/7/2008	ON	<0.5	1.43	21.4	10	41	15	54	181	6.8
11/4/2008	ON	<0.5	2.08	21.1	7.5	31	47	190	242	<2.0
3/6/2009	ON	<0.5	<0.5	22.0	83	1,900	180	990	770	240
4/17/2009	ON	<0.5	<0.5	22.2	3.1	140	8	37	68	26
5/29/2009	ON	<0.5	1.08	21.0	130	1,700	640	3,700	3,100	100
8/18/2009	ON	<0.5	0.78	21.7	28	380	37	290	310	33
8/25/2009	ON	<0.5	0.87	20.6	37	500	44	320	293	20
9/18/2009	ON	<0.5	0.37	21.6	11	75	11	39	107	3
10/29/2009	ON	<0.5	1.80	18.2	77	350	45	250	440	4
11/25/2009	ON	<0.5	<0.5	21.1	14	110	12	110	164	11
12/15/2009	OFF	<0.5	<0.5	21.7	7	28	3	20	47	<3.2
2/26/2010	ON	<0.5	0.4	21.2	20	300	18	220	260	21
3/26/2010	ON	<0.5	1.0	20.2	18	380	20	110	90	5
5/4/2010	ON	<0.5	0.4	21.4	13	100	42	170	222	3
6/29/2010	ON	<0.5	0.4	21.3	9	74	13	66	82	<5.0
8/3/2010	ON	<0.5	0.6	20.4	29	210	13	64	85	9
8/31/2010	ON	0.0039	<0.5	21.4	11	72	12	66	87	8
9/14/2010	ON	<0.5	<0.5	21.6	6	63	15	57	84	<3.2

Notes:

1. Influent vapor samples were collected from the manifold conveying soil vapors extracted from the south-central and southeastern areas.

2. Other detected volatile organic compounds (VOCs) are included in the laboratory analytical reports in Appendix A.

3. Method used is SCAQMD 25.1M

Abbreviations:

%v = percent by volume

TPH-g = total petroleum hydrocarbons as gasoline (C4-C12)

ppmv = parts per million by volume

ppbv = parts per billion by volume

MTBE = methyl tertiary butyl ether

<0.5 = not detected at or above the laboratory reporting limit shown

TABLE 5 Extracted Groundwater Analytical Results¹

SFPP, L.P.

Defense Fuel Support Point Norwalk

Norwalk, California

Date EPA 8015M EPA 8260B Volatile Organic Compounds (VOCs) ²							s)²
Sampled	TPH-g	TPH-fp	Benzene	Ethylbenzene	Toluene	Xylenes	MTBE
	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)	(µg/L)
7/11/2007			4,800	130	890	1,040	690
8/7/2007	14,000	11,000	5,400	140	1,100	770	540
9/25/2007	12,000	30,000	3,400	310	1,600	2,390	540
10/16/2007	8,900	8,400	3,400	94	520	660	390
11/2/2007	44,000	6,500	3,200	130	860	1,160	570
11/30/2007	6,000	5,200	1,800	48	170	490	450
12/21/2007	7,200	4,200	2,100	41	170	430	750
1/4/2008	4,300	7,200	3,300	49	300	540	620
1/18/2008	11,000	2,200	3,600	140	650	850	620
2/1/2008	8,700	5,700	3,600	100	440	930	560
3/4/2008	7,200	4,900	3,900	120	510	770	620
4/8/2008	8,100	10,000	2,800	96	280	580	640
5/6/2008	5,300	2,800	2,900	76	190	328	430
6/3/2008	8,400	6,800	3,700	110	450	480	320
7/2/2008	9,200	4,300 ³	4,500	75	620	650	400
8/19/2008	4,000	6,600	2,600	57	76	215	450
9/5/2008	160	<500	<12	<25	<25	<25	<25
10/7/2008	<100	<500	0.36 J	<1.0	<1.0	1.59	1.7
11/4/2008	12,000	660,000	2,500	140	220	760	160
12/4/2008	1,300	1,500	600	8.2	28	73	130
1/6/2009	1,500	980	560	23	41	110	320
3/6/2009	2,500	1,500	1,100	33	51	114	65
4/7/2009	3,100	6,900	1,100	36	230	207	210
5/13/2009	690	1,500	120	3.2	14	60	24
6/12/2009	150	<500	<0.50	<1.0	<1.0	0.71 J	44
7/10/2009	4,500	560	1,500	41	68	175	150
8/4/2009	2,000	1,000	1,200	16	18	64	100
9/1/2009	4,800	3,500	380	45	25	328	5.4 J
10/6/2009	3,900	4,600	3,200	21	15	35	82
10/27/2009	1,000	<500	520	4	15	10	180
11/3/2009	120	<500	2	0.55 J	0.61 J	3	40
11/25/2009	5,700	4,000	3,100	26	13	48	88
2/16/2010	8,000	5,900	4,700	110	1,300	800	1,800
3/9/2010	7,000	5,900	6,600	110	460	550	410
4/20/2010	10,000	11,000	6,000	44	230	174	130
5/14/2010	8,500	2,100	3,600	67	380	400	210
6/25/2010	4,600	2,600	2,200	61	540	380	170
7/20/2010	21,000	21,000	3,400	370	3,000	2,550	2,300
8/3/2010	3,400	1,500	1,400	17	140	161	390
8/10/2010	5,800	3,400	2,600	40	190	169	140
9/14/2010	9,400	10,000	4,900	170	1,100	1,340	380

Notes Notes

1. Influent samples were collected from the manifold conveying groundwater extracted from the south-central, southeastern, and West Side Barrier areas.

2. Other detected VOCs are included in the laboratory analytical reports in Appendix A.

3. TPH-fp result from influent extracted groundwater sample collected on July 10, 2008.

Abbreviations TPH-g = total petroleum hydrocarbons as gasoline (C4-C12)

 $\mu g/L = micrograms per liter$

TPH-fp = total petroleum hydrocarbons as fuel products (C7-C28)

MTBE = methyl tertiary butyl ether

-- = not analyzed

<500 = Not detected at or above the laboratory reporting limit (RL) shown

J = Analyte was detected above the laboratory method detection limit and below the laboratory RL

TABLE 6 **Remediation Well Vapor Concentrations**

SFPP, L.P. Defense Fuel Support Point Norwalk

Norwalk, California

Remediation Area	Remediation Well ID	Remediation Well Function ¹	Well Operation Status at End of Third Quarter 2010 ²	9/17/2010 (ppmv as Hexane)	
	MW-SF-1	SVE	OFF	27.5	
	MW-SF-2	SVE; TFE	OFF; OFF	2.4	
	MW-SF-3	SVE; TFE	ON; OFF	75.6	
	MW-SF-4	SVE	OFF	17.3	
	MW-SF-5	SVE	OFF	8.5	
	MW-SF-6	SVE; TFE	OFF; OFF	4.1	
	MW-SF-9	SVE	OFF	47.6	
	MW-SF-10	SVE	ON	60.1	
	MW-SF-11	SVE; TFE	OFF; ON	11.5	
	MW-SF-12	SVE; TFE	ON; ON	248.1	
	MW-SF-13	SVE; TFE	OFF; ON	6.9	
	MW-SF-14	SVE; TFE	OFF; ON	4.6	
	MW-SF-15	SVE; TFE	ON; ON	74.3	
	MW-SF-16	SVE; TFE	ON; ON	90.1	
South-Control	GMW-9	SVE; TFE	OFF; OFF	1.1	
Souri-Central	GMW-10	SVE	OFF	7.6	
	GMW-22	SVE; TFE	OFF; ON	1.1	
	GMW-24	SVE; TFE	OFF; OFF	1.8	
	GMW-25	SVE; GWE OFF; OFF		1.8	
	GWR-3	SVE; GWE	ON; OFF	76.7	
	VEW-1	SVE	ON	104.9	
	VEW-2	SVE	ON	83.1	
	MW-O-1	SVE; TFE	ON; OFF	1.3	
	MW-O-2	SVE; TFE	ON; ON	107.1	
	GMW-O-11	SVE; TFE	ON; ON	88.6	
	GMW-O-12	SVE	ON	1.9	
	GMW-O-20	SVE; TFE	ON; OFF	1.7	
	GMW-O-23	SVE; TFE	ON; OFF	5.4	
	MW-18 (MID)	SVE	OFF	2.4	
	HW-2	SVE	OFF	25.6	
Southoastorn	GMW-O-15	SVE; TFE	ON; ON	1.8	
Soumeastern	GMW-O-18	SVE; TFE	ON; ON	1.8	

Notes 1. The well operations listed correspond to the well functions indicated in the previous column.

2. Vapor readings measured in the field with a photoionization detector (PID) calibrated using 50 ppmv of hexane.

Data reported based on information provided by SFPP, L.P.

Abbreviations

SVE = soil vapor extraction

TFE = total fluids extraction

GWE - groundwater extraction

ppmv = parts per million by volume

NM = not measured

Groundwater and Product Measurements and Elevations for

Total Fluids, Groundwater, and Soil Vapor Extraction Wells SFPP, L.P. Defense Fuel Support Point Norwalk Norwalk, California

Well ID	Date Gauged	Top of Well Casing Elevation	Measured Depth to Groundwater	Measured Depth to Product	Apparent Product Thickness	Groundwater Elevation	Gauged By
	5	(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)	
GMW-9	8/8/2008	74.44	28.01	27.96	0.05		Envent
	10/16/2008	74.44	28.36	28.35	0.01		Envent
	12/17/2008	74.44	27.61			46.83	Envent
	1/15/2009	74.44	28.91			45.53	Envent
	3/27/2009	74.44	29.04			45.40	Envent
	4/21/2009	74.44	28.16			46.28	Envent
	7/21/2009	74.44	28.31			46.13	Envent Blaing Toch
	5/24/2010	74.44	30.47			43.97	Blaine Tech
GMW-10	04/30/2007	74.67		25.9		48.77	Secor
	11/12/2007	74.67	25.02	25.82	0.83		Secor
	04/14/2008	74.67	25.38	25.44	0.06		Secor
	10/13/2008	74.67		24.16		50.51	Stantec
	4/20/2009	74.67		24.46		50.21	Blaine Tech
	10/19/2009	74.67		27.2		47.47	Blaine Tech
	5/24/2010	74.67		26.72		47.95	Blaine Tech
01414 00	5/28/2010	/4.6/		26.7		47.97	Blaine Lech
GIVIVV-22	11/12/2007 9/12/2009	74.17	26.45	25.91	0.54		Stantec
	0/12/2008 10/31/2008	74.17	20.70	27.04	1 21	47.47	Envent
	11/4/2008	74.17	26.25	27.04		47 20	Envent
	12/17/2008	74.17	26.65			47.52	Envent
	1/15/2009	74.17	27.18			46.99	Envent
	3/27/2009	74.17	27.86			46.31	Envent
	4/21/2009	74.17	27.30	27.20	0.10		Envent
	7/21/2009	74.17	27.70			46.47	Envent
	11/6/2009	74.17	28.12			46.05	Kinder Morgan
	9/3/2010	74.17	28.36	25.10	3.26		Kinder Morgan
GMW-24	11/12/2007	74.04	27.50	27.46	0.04		Stantec
	8/19/2008	74.04	29.34	28.24	1.10		Envent
	10/17/2008	74.04	30.00	29.90	0.90		Envent
	12/18/2008	74.04	29.04			45.00	Envent
	1/15/2009	74.04	30.56	29.80	0.76		Envent
	3/20/2009	74.04	31.28			42.76	Envent
	3/27/2009	74.04	30.45			43.59	Envent
	4/21/2009	74.04	29.91			44.13	Envent
	7/21/2009	74.04	32.78			41.26	Envent
	2/4/2010	74.04	29.67	29.40	0.27		Kinder Morgan
	6/22/2010	74.04	29.47			44.57	Blaine Tech
CMW/ 25	9/3/2010	74.04	29.90			44.14	Kinder Morgan
GIVIV-25	8/12/2007	74.29	27.30	21.25	0.05		Stantec
	10/17/2008	74.29	28.26			46.03	Envent
	12/18/2008	74.29	29.01			45.28	Envent
	1/15/2009	74.29	28.62			45.67	Envent
	3/24/2009	74.29	28.79			45.50	Envent
	4/21/2009	74.29	28.35			45.94	Envent
	7/21/2009	74.29	29.80			44.49	Envent
	10/19/2009	74.29	30.28			44.01	Blaine Tech
01444.000	6/22/2010	74.29	31.64			42.65	Blaine Tech
GMW-36	8/28/2007	74.53	24.31			50.22	Stantec
	2/10/2008	74.53 74.53	24.80 25.50	24.85	0.01	 /0.27	Stantec
	4/14/2008	74.53	23.50			50 16	Stantec
	8/8/2008	74 53	26.20	26.14	0.06		Envent
	10/16/2008	74.53	26.11	26.09	0.02		Envent
	12/18/2008	74.53	28.70	28.65	0.05		Envent
	1/15/2009	74.53	27.73	27.45	0.28		Envent
	2/20/2009	74.53	26.39	26.35	0.04		Envent

Б

Groundwater and Product Measurements and Elevations for

	Date	Top of Well Casing	Measured Depth	Measured Depth to	Apparent Product	Groundwater	Gauged By
well ID	Gauged	Elevation	to Groundwater	Product	Thickness	Elevation	
		(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)	
GMW-36	2/23/2009	74.53	26.13	25.80	0.33		Blaine Tech
	3/24/2009	74.53	29.83			44.70	Envent Dising Task
	4/20/2009	74.53	25.63	25.59	0.04		Blaine Tech
	7/17/2009	74.53	27.40			47.13	Envent
	7/21/2009	74.53	26.03			40.30	Blaine Tech
	10/10/2009	74.53	26.56	26.45	0.11	40.03	Blaine Tech
	2/4/2010	74.53	26.93	26.40	0.13		Kinder Morgan
	3/15/2010	74.53	26.80			47 73	Blaine Tech
	4/16/2010	74.53	26.90			47.63	Blaine Tech
	5/24/2010	74.53	25.96	25.90	0.06		Blaine Tech
	5/28/2010	74.53	25.94	25.88	0.06		Blaine Tech
	6/22/2010	74.56	25.94	25.91	0.03		Blaine Tech
GMW-O-11	11/12/2007	74.17	24.40			49.77	Stantec
	8/15/2008	74.17	29.30			44.87	Envent
	10/17/2008	74.17	24.45			49.72	Envent
	12/19/2008	74.17	24.85			49.32	Envent
	1/15/2009	74.17	26.87	24.38	2.49		Envent
	2/24/2009	74.17	24.31	24.21	0.10		Envent
	3/27/2009	/4.1/	31.08			43.09	Envent
	4/21/2009	74.17	25.30	25.34	0.02		Envent
	11/6/2009	74.17	20.18			47.99	Envent Kinder Morgon
GMW-0-12	11/0/2009	73.49	20.33	20.10	0.15	50.36	Stantec
010107-0-12	4/14/2008	73.49	23.36			50.30	Stantec
	10/13/2008	73.49	24.20			49.29	Stantec
	4/20/2009	73.49	24.21			49.28	Blaine Tech
	10/19/2009	73.49	25.08			48.41	Blaine Tech
	5/24/2010	73.49	24.80			48.69	Blaine Tech
	5/28/2010	73.49	24.74			48.75	Blaine Tech
GMW-O-15	11/12/2007	74.23	23.95	23.85	0.10		Stantec
	4/14/2008	74.23	23.64			50.59	Stantec
	8/8/2008	74.23	24.60			50.59	Envent
	8/11/2008	74.23	24.40	24.34	0.06		Stantec
	10/16/2008	74.23	24.53			49.70	Envent
	12/18/2008	74.23	24.80			49.37	Envent
	1/2/2009	74.23	24.02			49.41	Envent
	2/20/2009	74.23	20.01			40.22	Envent
	2/23/2009	74.23	24.00	24 74	0.02		Blaine Tech
	3/24/2009	74.23	25.55			48.68	Envent
	4/20/2009	74.23	24.66	24.61	0.05		Blaine Tech
	7/17/2009	74.23	25.01			49.22	Envent
	7/22/2009	74.23	24.99	24.94	0.05		Blaine Tech
	10/19/2009	74.23	25.55	25.43	0.12		Blaine Tech
	2/4/2010	74.23	25.50	25.48	0.02		Kinder Morgan
	4/16/2010	74.23	23.10			51.13	Blaine Tech
	5/24/2010	74.23	25.67			48.56	Blaine Tech
	5/28/2010	74.23	25.35			48.88	Blaine Tech
	6/22/2010	74.23	25.81			48.42	Blaine Tech
GMW-O-18	04/30/2007	74.36		24.21		50.15	Secor
	04/14/2007	74.00		22.40		10 86	Secor
	04/14/2008 10/13/2009	74.00		24.0		49.00	Stantoo
	4/20/2008	74.30		25.40		48.90	Blaine Tech
	10/19/2009	74.36		26.31		48.05	Blaine Tech
	3/15/2010	74.36		26.54		47.82	Blaine Tech
	4/16/2010	74.36		24.25		50.11	Blaine Tech
	5/24/2010	74.36		26.26		48.10	Blaine Tech
	5/28/2010	74.36		26.03		48.33	Blaine Tech

Groundwater and Product Measurements and Elevations for

Well ID	Date Gauged	Top of Well Casing Elevation	Measured Depth to Groundwater	Measured Depth to Product	Apparent Product Thickness	Groundwater Elevation	Gauged By
	- augua	(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)	
GMW-O-20	8/15/2008	73.32	25.90			47.42	Envent
	10/17/2008	73.32	25.82			47.50	Envent
	12/19/2008	73.32	27.15			46.17	Envent
	1/15/2009	73.32	26.53	26.09	0.44		Envent
	2/24/2009	73.32	27.85			45.47	Envent
	3/20/2009	73.32	28.81			44.51	Envent
	3/27/2009	73.32	27.84			45.48	Envent
	4/21/2009	73.32	28.70			44.62	Envent
	7/21/2009	73.32	24.10			49.22	Envent Kinder Mergen
	6/22/2010	73.32	25.60	25.40	0.20		Rinder Worgan
GMW-0-21	12/28/2010	73.32	24.70	24.00	0.10	43.76	Geometrix
Givitv-0-21	10/17/2008	71.43	26.00			45.70	Envent
	12/10/2008	71.43	20.00			45.45	Envent
	3/27/2009	71.43	26.41			45.02	Envent
	7/21/2009	71.43	24.88			46.55	Envent
	11/9/2009	71.43	25.02			46.41	Kinder Morgan
GMW-O-23	8/14/2007	73.63	23.33			50.30	Geomatrix
	8/21/2007	73.63	23.31			50.32	Geomatrix
	8/28/2007	73.63	23.00			50.63	Stantec
	9/11/2007	73.63	23.42			50.21	Geomatrix
	10/5/2007	73.63	27.79			45.84	Geomatrix
	11/2/2007	73.63	25.15			48.48	Geomatrix
	11/13/2007	73.63	23.90			49.73	Stantec
	12/28/2007	73.63	24.91			48.72	Geomatrix
	8/15/2008	73.63	26.28			47.35	Envent
	10/17/2008	73.63	27.16			46.47	Envent
	12/19/2008	73.63	27.60			46.03	Envent
	1/15/2009	73.63	27.54			46.09	Envent
	2/24/2009	73.63	26.19			47.44	Envent
	3/27/2009	73.63	23.74			49.89	Envent
	4/21/2009	73.63	27.30			46.33	Envent Kinder Mergen
	6/22/2010	73.03	27.50			40.13	Rinder Worgan
GMW-SE-9	4/21/2010	73.03	52.10	24 19		41.33	Envent
	5/24/2010	73		28.31		44.69	Blaine Tech
	5/28/2010	73		28.37		44.63	Blaine Tech
GMW-SF-10	4/21/2009	75.77		27.1		48.67	Envent
GWR-3	11/12/2007	74.93	27.90			47.03	Stantec
	10/17/2008	74.93	29.88			45.05	Envent
	12/17/2008	74.93	19.71			55.22	Envent
	1/15/2009	74.93	29.27	29.26	0.26		Envent
	3/27/2009	74.93	27.18			47.75	Envent
	4/21/2009	74.93	29.97			44.96	Envent
	7/21/2009	74.93	28.77			46.16	Envent
MW-18 (MID)	04/30/2007	75.67		29.77		45.9	Secor
	11/12/2007	75.67		30.23		45.44	Secor
	04/14/2008	/5.6/		30.45		45.22	Secor
	10/13/2008	/5.6/		31.15		44.52	Stantec
	4/20/2009	/ 0.0/		31.49		44.18 42.05	Blaine Tech
	5/24/2010	10.07		32.02		43.05	Blaine Tech
	5/28/2010	75.67		32.20		43.41	Blaine Tech
MW-O-1	8/14/2007	75.07	25.31	23.17	1.53		Geometriv
	8/21/2007	75.48	23.84	23.58	0.26		Geomatrix
	8/28/2007	75.48	23.07	23.06	0.01		Stantec
	9/11/2007	75.48	23.86	23.48	0.38		Geomatrix
	10/5/2007	75.48	24.67			50.81	Geomatrix
	11/2/2007	75.48	24.25			51.23	Geomatrix
	11/12/2007	75.48	24.27	24.25	0.02		Stantec

Groundwater and Product Measurements and Elevations for

Well ID	Date Gauged	Top of Well Casing Elevation	Measured Depth to Groundwater	Measured Depth to Product	Apparent Product Thickness	Groundwater Elevation	Gauged By
		(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)	
MW-O-1	12/28/2007	75.48	25.54	25.51	0.03		Geomatrix
	8/19/2008	75.48	25.18	25.13	0.05		Envent
	10/17/2008	75.48	25.30			50.18	Envent
	12/19/2008	75.48	26.31			49.17	Envent
	1/15/2009	75.48	25.84			49.64	Envent
	4/21/2009	75.48	25.41			50.07	Envent
	10/19/2009	75.48	26.30			49.18	Blaine Tech
MW-O-2	11/12/2007	71.90	23.10			48.80	Stantec
	10/17/2008	71.90	24.85			47.05	Envent
	12/19/2008	71.90	25.51			46.39	Envent
	3/27/2009	71.90	25.22			46.68	Envent
	11/0/2009	71.90	23.03			48.27	Envent Kinder Morgon
	11/9/2009	71.90	25.39			40.01	
IVIVV-SF-1	8/28/2007	78.93	27.94			50.99	Stantec
	11/12/2007	78.93	28.76			50.17	Stantec
	2/19/2008	78.93	29.50			49.43	Stantec
	4/14/2008	78.93	29.16			49.77	Stantec
	8/11/2008	78.93	29.75			49.18	Stantec
	2/22/2000	70.93	29.00			49.07	Stantec Plaina Tach
	2/23/2009	70.93	20.00			40.93	Blaine Tech
	7/22/2009	78.93	30.98			40.90	Blaine Tech
	10/19/2009	78.93	31.11			47.93	Blaine Tech
	3/15/2010	78.93	31.74			47.02	Blaine Tech
	5/24/2010	78.93	30.79			48 14	Blaine Tech
	5/28/2010	78.93	30.57			48.36	Blaine Tech
	6/22/2010	78.93	30.84			48.09	Blaine Tech
	7/12/2010	78.93	30.51			48.42	Blaine Tech
MW-SF-2	11/12/2007	78.53	29.18	28.71	0.47		Stantec
	8/12/2008	78.53	31.11			47.42	Envent
	10/17/2008	78.53	31.55	31.50	0.05		Envent
	12/18/2008	78.53	32.75	32.55	0.20		Envent
	1/15/2009	78.53	30.84	30.57	0.27		Envent
	3/24/2009	78.53	28.85			49.68	Envent
	4/21/2009	78.53	29.98			48.55	Envent
	7/21/2009	78.53	29.85			48.68	Envent
	12/9/2009	78.53	31.45			47.08	Kinder Morgan
MW-SF-3	11/12/2007	78.12	29.34	28.28	1.06		Stantec
	8/12/2008	78.12	30.30	29.05	1.25		Envent
	10/17/2008	78.12	29.45			48.67	Envent
	1/15/2000	70.12	20.06	30.62	0.20		Envent
	3/20/2009	78.12	29.90	29.94	0.02	47.02	Envent
	3/24/2009	78.12	27.82			50.30	Envent
	4/21/2009	78.12	29.51	29.50	0.01		Envent
	7/21/2009	78.12	30.07			48.05	Envent
	11/6/2009	78.12	30.37	30.35	0.02		Kinder Morgan
	12/9/2009	78.12	30.53			48.05	Kinder Morgan
	9/3/2010	78.12	30.97	30.42	0.55		Kinder Morgan
MW-SF-4	8/14/2007	79.38	30.34	28.38	1.96		Geomatrix
	8/28/2007	79.38	29.95	28.30	1.65		Stantec
	9/11/2007	79.38	29.98	28.43	1.55		Geomatrix
	10/5/2007	79.38	30.68	28.85	1.83		Geomatrix
	10/12/2007	79.38	30.27	29.96	0.31		Geomatrix
	10/19/2007	79.38	30.28			49.10	Geomatrix
	10/26/2007	79.38	30.52			48.86	Geomatrix
	11/2/2007	79.38	30.68			48.70	Geomatrix
	11/12/2007	/9.38	29.70	29.69	0.01		Stantec
	12/21/2007	79.38	30.69			48.69	Geomatrix
1	2/19/2008	19.38	30.22			43.10	Starliet

Groundwater and Product Measurements and Elevations for

Wall ID	Date	Top of Well Casing	Measured Depth	Measured Depth to	Apparent Product	Groundwater	Gauged By	
well ID	Gauged	Elevation	to Groundwater	Product	Thickness	Elevation		
		(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)		
MW-SF-4	3/21/2008	79.38	30.07			49.31	Envent	
	4/14/2008	79.38	29.95			49.43	Stantec	
	8/8/2008	79.38	30.51			48.87	Envent	
	8/11/2008	79.38	30.57			48.81	Stantec	
	10/16/2008	79.38	30.77			48.01	Envent	
	1/15/2009	79.30	31.14			40.24	Envent	
	2/20/2009	79.30	30.04			40.04	Plaina Tach	
	2/23/2009	79.30	20.90	20.04	0.08	40.42	Blaine Tech Blaine Tech	
	4/20/2009	79.30	30.02	29.94	0.08	48.60	Envent	
	7/17/2009	79.30	31.85			40.00	Envent	
	7/22/2009	79.30	31.65	31.61	0.04	47.00	Blaine Tech	
	10/10/2009	79.38	31.03	31.01	0.04		Blaine Tech	
	3/15/2010	79.38	31.95	31.90	0.03		Blaine Tech	
	5/24/2010	79.38	31.60			47 78	Blaine Tech	
	5/28/2010	79.38	26.40			52.98	Blaine Tech	
	6/22/2010	79.38	31.63			47 75	Blaine Tech	
	7/12/2010	79.38	31.37			48.01	Blaine Tech	
MW-SE-5	8/21/2007	79.74	28.36			51.38	Geomatrix	
	8/28/2007	79.74	28.84			50.90	Stantec	
	10/5/2007	79.74	29.50			50.24	Geomatrix	
	11/2/2007	79.74	31.50			48.24	Geomatrix	
	11/12/2007	79.74	29.93			49.81	Stantec	
	12/21/2007	79.74	31.00			48.74	Geomatrix	
	4/14/2008	79.74	30.20			49.54	Stantec	
	8/11/2008	79.74	30.85			48.89	Stantec	
	10/13/2008	79.74	30.93			48.81	Stantec	
	4/20/2009	79.74	30.99			48.75	Blaine Tech	
	5/24/2010	79.74	31.55			48.19	Blaine Tech	
	5/28/2010	79.74	31.44			48.30	Blaine Tech	
	6/22/2010	79.74	31.57			48.17	Blaine Tech	
MW-SF-6	11/12/2007	76.80	27.14			49.66	Stantec	
	8/12/2008	76.80	29.82			46.98	Envent	
	10/17/2008	76.80	29.75			47.05	Envent	
	12/18/2008	76.80	30.73			46.07	Envent	
	1/15/2009	76.80	31.35			45.45	Envent	
	3/24/2009	76.80	30.50			46.30	Envent	
	4/21/2009	76.80	28.45			48.35	Envent	
	7/21/2009	76.80	27.22			49.58	Envent	
	11/6/2009	76.80	29.10			47.70	Kinder Morgan	
N#4/ 05 0	12/9/2009	76.80	31.35			45.45	Kinder Morgan	
MW-SF-9	8/14/2007	74.10	28.73	28.61	0.12		Geomatrix	
	8/28/2007	74.10	20.55			53.55	Stantec	
	8/21/2007	74.10	20.00			47.55	Geomatrix	
	9/11/2007	74.10	19.40			54.70 47.26	Geomatrix	
	10/5/2007	74.10	20.04			47.20	Geomatrix	
	11/2/2007	74.10	22.70			51.54	Stantoc	
	12/21/2007	74.10	24.05			50.05	Geomatrix	
	4/14/2008	74 10	27.00			49.87	Stantec	
	10/13/2008	74 10	24 83			49 27	Stantec	
	4/20/2000	74 10	25.27			48 83	Blaine Tech	
	10/19/2009	74 10	26 45			47.65	Blaine Tech	
	5/24/2010	74.10	25.80			48.30	Blaine Tech	
	5/28/2010	74 10	25.66			48 44	Blaine Tech	
	6/22/2010	74.10	25.84			48.26	Blaine Tech	
MW-SF-10	10/17/2008	76.53		27.49		49.04	Envent	
	10/19/2009	76.53		28.61		47.92	Blaine Tech	
MW-SF-11	8/14/2007	78.56	28.58	28.30	0.28		Geomatrix	
_	8/21/2007	78.56	28.76	28.63	0.13		Geomatrix	

Groundwater and Product Measurements and Elevations for

Well ID	Date	Top of Well Casing Elevation	Measured Depth to Groundwater	Measured Depth to	Apparent Product	Groundwater Elevation	Gauged By
	Gauged	(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)	
MW-SF-11	8/28/2007	78.56	28.22			50.34	Stantec
_	9/11/2007	78.56	26.90			51.66	Geomatrix
	10/5/2007	78.56	28.43			50.13	Geomatrix
	11/2/2007	78.56	29.48	29.38	0.10		Geomatrix
	11/12/2007	78.56	29.03			49.53	Stantec
	8/15/2008	78.56	30.13			48.43	Envent
	10/17/2008	78.56	30.50			48.06	Envent
	12/18/2008	78.56	29.92			48.64	Envent
	1/15/2009	78.56	30.32			48.24	Envent
	3/24/2009	78.56	31.05			47.51	Envent
	4/21/2009	78.56	30.03			48.53	Envent
	7/21/2009	78.56	30.89			47.67	Envent
	11/9/2009	78.56	31.00			47.56	Kinder Morgan
	9/3/2010	78.56	31.22			47.34	Kinder Morgan
MW-SF-12	8/14/2007	78.07	27.76			50.31	Geomatrix
	8/21/2007	78.07	27.43			50.64	Geomatrix
	8/28/2007	/8.0/	27.58			50.49	Stantec
	9/11/2007	78.07	27.73			50.34	Geomatrix
	10/5/2007	78.07	28.06			50.01	Geomatrix
	11/2/2007	78.07	29.59			48.48	Geomatrix
	8/12/2007	70.07	20.33			49.74	Stantec
	0/12/2000	70.07	30.02			40.00	Envent
	12/18/2008	78.07	30.42			47.00	Envent
	1/15/2000	78.07	30.11			40.32	Envent
	3/24/2009	78.07	29.41			48.66	Envent
	4/21/2009	78.07	29.52			48 55	Envent
	7/21/2009	78.07	28.58			49.00	Envent
	11/4/2009	78.07	30.36			47.71	Kinder Morgan
	2/4/2010	78.07	29.20			48.87	Kinder Morgan
MW-SF-13	8/14/2007	73.40	22.98			50.42	Geomatrix
	8/21/2007	73.40	23.11			50.29	Geomatrix
	8/28/2007	73.40	22.85			50.55	Stantec
	9/11/2007	73.40	23.10			50.30	Geomatrix
	10/5/2007	73.40	28.11			45.29	Geomatrix
	11/2/2007	73.40	25.43	25.41	0.02		Geomatrix
	11/12/2007	73.40	23.70			49.70	Stantec
	12/21/2007	73.40	24.45	24.42	0.03		Geomatrix
	8/15/2008	73.40	27.38	24.11	3.27		Envent
	10/17/2008	73.40	27.28	24.33	2.95		Envent
	10/21/2008	73.40	27.14	24.26	2.88		Envent
	9/3/2010	73.40	27.40	25.71	1.69		Kinder Morgan
	12/17/2008	73.40	26.21	24.70	1.51		Envent
	1/15/2009	73.40	26.90	24.80	2.10		Envent
	3/27/2009	73.40	26.46	25.49	0.97		Envent
	4/21/2009	73.40	24.80	24.78	0.08		Envent
	11/6/2009	73.40	25.72	25.40	0.24	47.69	Envent Kinder Morgon
	2/4/2010	73.40	25.72	25.30	0.13	47.00	Kinder Morgan
MW-SE-14	8/14/2010	78.16	27.68	23.30	0.13	50.48	Geomatrix
	8/21/2007	78.16	27.60			50.56	Geomatrix
	8/28/2007	78.16	27.53			50.63	Stantec
	9/11/2007	78.16	27.66			50.50	Geomatrix
	10/5/2007	78.16	27.75			50.41	Geomatrix
	11/2/2007	78.16	29.83			48.33	Geomatrix
	8/15/2008	78.16	29.77	29.24	0.53		Envent
	10/17/2008	78.16	29.52	29.50	0.02		Envent
	12/18/2008	78.16	30.62			47.54	Envent
	1/15/2009	78.16	30.08			48.08	Envent
	3/24/2009	78.16	29.73			48.43	Envent

Groundwater and Product Measurements and Elevations for

Total Fluids, Groundwater, and Soil Vapor Extraction Wells

SFPP, L.P. Defense Fuel Support Point Norwalk

Norwalk, California

Well ID	Date	Top of Well Casing	Measured Depth	Measured Depth to	Apparent Product	Groundwater	Gauged By
Weirib	Gauged		to Groundwater	Product	Thickness	Lievation	
		(ft msl)	(ft btoc)	(ft btoc)	(feet)	(ft msl)	
MW-SF-14	4/21/2009	78.16	29.61			48.55	Envent
	7/21/2009	78.16	29.20			48.96	Envent
	11/6/2009	78.16	30.48			47.68	Kinder Morgan
	12/9/2009	78.16	30.68			47.48	Kinder Morgan
	6/22/2010	78.16	26.17			51.99	Blaine Tech
MW-SF-15	8/14/2007	78.27	27.78	27.75	0.03		Geomatrix
	8/21/2007	78.27	27.69	27.65	0.04		Geomatrix
	8/28/2007	78.27	27.65	27.61	0.04		Stantec
	9/11/2007	78.27	27.62			50.65	Geomatrix
	10/5/2007	78.27	28.15			50.12	Geomatrix
	11/2/2007	78.27	30.45	30.20	0.25		Geomatrix
	11/12/2007	78.27	28.75			49.52	Stantec
	8/15/2008	78.27	30.12	29.35	0.77		Envent
	10/17/2008	78.27	30.80	29.44	1.36		Envent
	10/21/2008	78.27	30.80	29.31	1.49		Envent
	12/18/2008	78.27	32.11	30.56	1.55		Envent
	1/15/2009	78.27	31.75	29.70	2.05		Envent
	3/24/2009	78.27	30.32	29.93	0.39		Envent
	4/21/2009	78.27	29.96	29.60	0.36		Envent
	7/21/2009	78.27	30.45			47.82	Envent
	11/4/2009	78.27	31.10	30.45	0.36		Kinder Morgan
	12/9/2009	78.27	30.87			47.40	Kinder Morgan
MW-SF-16	8/14/2007	78.21	27.68			50.53	Geomatrix
	8/21/2007	78.21	27.33			50.88	Geomatrix
	8/28/2007	78.21	27.51			50.70	Stantec
	9/11/2007	78.21	27.59			50.62	Geomatrix
	10/5/2007	78.21	28.10			50.11	Geomatrix
	11/2/2007	78.21	29.81			48.40	Geomatrix
	11/12/2007	78.21	28.40			49.81	Stantec
	8/15/2008	78.21	29.36			48.85	Envent
	10/17/2008	78.21	29.51			48.70	Envent
	12/18/2008	78.21	30.94			47.27	Envent
	1/15/2009	78.21	30.01	30.00	0.01		Envent
	3/24/2009	78.21	29.82			48.39	Envent
	4/21/2009	78.21	29.60			48.61	Envent
	7/21/2009	78.21	30.36			47.85	Envent
	11/4/2009	78.21	30.58			47.63	Kinder Morgan
	2/4/2010	78.21	30.36			47.85	Kinder Morgan
	9/3/2010	78.21	30.25			47.96	Kinder Morgan

Abbreviations

ft msl = feet above mean sea level based on the National Geodetic Vertical Datum of 1929.

ft btoc = feet below top of casing.

--- = not detected or not applicable.

Figures

Appendix A Laboratory Analytical Reports

July 27, 2010

Alex Padilla AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627

Subject: Calscience Work Order No.: 10-07-1465 Client Reference: SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 7/20/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Date Received:	07/20/10
Work Order No:	10-07-1465
Preparation:	EPA 3510C
Method:	EPA 8015B (M)
	Date Received: Work Order No: Preparation: Method:

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sample Number		Date/Time Collected Matrix		Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
INF-07-20		10-07-14	10-07-1465-1-G		Aqueous	GC 49	07/23/10	07/24/10 10:52	100723B28		
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.											
Parameter	<u>Result</u>	<u>RL</u>	MDL		DF	<u>Qual</u>	<u>Units</u>				
TPH as Fuel Product Surrogates:	21000 <u>REC (%)</u>	500 <u>Control Limits</u>	430 <u>MDL</u>	1		Qual	ug/L				
Decachlorobiphenyl	97	68-140									
Method Blank		099-12-3	84-28	N/A	Aqueous	GC 49	07/23/10	07/24/10 10:05	100723B28		
Comment(s): -Results were evaluation	ted to the MDL,	concentrations >	= to the I	MDL but < RI	L, if found, ar	e qualified with	n a "J" flag.				
Parameter	<u>Result</u>	<u>RL</u>	MDL		<u>DF</u>	Qual	Units				
TPH as Fuel Product Surrogates:	ND <u>REC (%)</u>	500 <u>Control Limits</u>	430 <u>MDL</u>	1		Qual	ug/L				
Decachlorobiphenyl	119	68-140									

n M

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 1 of 1

alscience aboratories, Inc.

Project: SFPP - Norwalk Site

Client Sample Number	Lab Sample Number		Date/Time Collected Matrix		Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
INF-07-20		10-07-14	65-1-E	07/20/10 12:30	Aqueous	GC 25	07/22/10	07/23/10 11:05	100722B01	
Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.										
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	DF	Qual	<u>Units</u>			
TPH as Gasoline	21000	500	240	5		_	ug/L			
<u>Surrogates:</u>	<u>REC (%)</u>	Control Limits	<u>MDL</u>			<u>Qual</u>				
1,4-Bromofluorobenzene	96	38-134								
Method Blank		099-12-24	47-4,359	N/A	Aqueous	GC 25	07/22/10	07/23/10 03:49	100722B01	
Comment(s): -Results were evaluate	ted to the MDL,	concentrations >	= to the N	IDL but < RL	_, if found, ar	e qualified with	n a "J" flag.			
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>			
TPH as Gasoline	ND	100	48	1			ug/L			
Surrogates:	<u>REC (%)</u>	Control Limits	MDL			Qual				
1.4-Bromofluorobenzene	79	38-134								

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

Page 1 of 1

SED IN ACCORDAN

AMEC Geomatrix, Inc.						Date Received: 07						7/20/1	0	
510 Superior Avenue					Work C	Jrder No.				10-0	7-146	5		
Suite 200														
Suite 200			Preparation:									EPA 5030B		
Newport Beach, CA 920		Method: EPA 8260B										В		
						Units:						ug/	L	
Project: SFPP - Norwa	lk Site										Page	e 1 of	2	
Client Sample Number		Lab Sample Number			Date/Time Collected	Date/Time Collected Matrix Instrument		Date Prepa	e D red A	ate/Time Analyzed	te/Time alyzed QC Bat			
INF-07-20			10-07-1465-1-A			07/20/10 12:30	Aqueous	GC/MS EE	E 07/21/10)7/22/10 10:14	/22/10 100721 10:14		
Comment(s): -Results were	evaluated to th	e MDL, c	oncentratio	ons >=	to the I	MDL but < RI	_, if found, are	e qualified wi	th a "J" flag	a.				
Parameter	Result	RL	MDL	DF	Qual	Parameter		•	Result	RL	MDL	DF	Qual	
Acetone	ND	1000	400	20		1.1-Dichlor	ropropene		ND	20	5.1	20		
Benzene	3400	10	5.7	20		c-1.3-Dich	loropropene		ND	10	5.7	20		
Bromobenzene	ND	20	6.7	20		t-1.3-Dichle	oropropene		ND	10	7.2	20		
Bromochloromethane	ND	20	14	20		Ethylbenze	ene		370	20	4.4	20		
Bromodichloromethane	ND	20	6.6	20		2-Hexanon	e		ND	200	140	20		
Bromoform	ND	20	11	20		Isopropylbe	enzene		20	20	4.5	20	J	
Bromomethane	ND	200	86	20		p-Isopropy	Itoluene		ND	20	5.2	20		
2-Butanone	ND	200	140	20		Methylene	Chloride		ND	200	52	20		
n-Butvlbenzene	21	20	5.5	20		4-Methyl-2	-Pentanone		ND	200	88	20		
sec-Butvlbenzene	6.5	20	4.1	20	J	Naphthaler	ne		190	200	51	20	J	
tert-Butvlbenzene	ND	20	5.5	20	-	n-Propylbe	nzene		55	20	16	20	-	
Carbon Disulfide	ND	200	38	20		Styrene			ND	20	6.0	20		
Carbon Tetrachloride	ND	10	8.5	20		1.1.1.2-Tet	trachloroethai	ne	ND	20	7.0	20		
Chlorobenzene	ND	20	4.4	20		1.1.2.2-Tet	trachloroethai	ne	ND	20	8.8	20		
Chloroethane	ND	100	26	20		Tetrachloro	bethene		ND	20	10	20		
Chloroform	ND	20	6.6	20		Toluene			3000	20	6.5	20		
Chloromethane	ND	200	9.7	20		1.2.3-Trich	lorobenzene		ND	20	6.1	20		
2-Chlorotoluene	ND	20	11	20		1,2,4-Trich	lorobenzene		ND	20	9.7	20		
4-Chlorotoluene	ND	20	4.2	20		1.1.1-Trich	loroethane		ND	20	9.0	20		
Dibromochloromethane	ND	20	9.7	20		1.1.2-Trich	loro-1.2.2-Tri	fluoroethane	ND	200	13	20		
1.2-Dibromo-3-Chloropropane	ND	100	62	20		1.1.2-Trich	loroethane		ND	20	11	20		
1.2-Dibromoethane	ND	20	9.3	20		Trichloroet	hene		ND	20	6.1	20		
Dibromomethane	ND	20	12	20		Trichloroflu	oromethane		ND	200	6.2	20		
1.2-Dichlorobenzene	ND	20	5.4	20		1.2.3-Trich	loropropane		ND	100	27	20		
1.3-Dichlorobenzene	ND	20	5.7	20		1.2.4-Trime	ethvlbenzene		470	20	4.9	20		
1.4-Dichlorobenzene	ND	20	4.2	20		1.3.5-Trime	ethvlbenzene		130	20	4.6	20		
Dichlorodifluoromethane	ND	20	9.8	20		Vinvl Aceta	ate		ND	200	140	20		
1,1-Dichloroethane	ND	20	7.5	20		Vinyl Chlor	ide		ND	10	6.5	20		
1,2-Dichloroethane	ND	10	6.3	20		p/m-Xylene	e		1800	20	9.1	20		
1.1-Dichloroethene	ND	20	8.0	20		o-Xvlene			750	20	4.7	20		
c-1.2-Dichloroethene	ND	20	9.7	20		Methyl-t-Bu	utvl Ether (MT	BE)	2300	20	6.1	20		
t-1.2-Dichloroethene	ND	20	8.1	20		Diisopropy	Ether (DIPE)	13	40	6.2	20	J	
1,2-Dichloropropane	ND	20	7.6	20		Ethyl-t-But	yl Ether (ETB	É)	ND	40	5.3	20		
1,3-Dichloropropane	ND	20	7.6	20		Tert-Amvl-	Methyl Ether	(TAME)	ND	40	5.7	20		
2,2-Dichloropropane	ND	20	9.2	20		Ethanol	•	. ,	ND	2000	1000	20		
Surrogates:	<u>REC (%)</u>	<u>Control</u>	<u>Qua</u>	<u>l</u>		Surrogates	<u>:</u>		<u>REC (%)</u>	<u>Contro</u>	<u>ol Q</u>	ual		
Dibromofluoromothere	100	LIMITS 80 126					oothors -14		100		1			
	102	00-120					vetnane-04		100	00-13	0			
I Oluene-d8	99	80-120				1,4-Bromo	riuorobenzene	Э	93	80-12	U			

~ M

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

07/20/10

10-07-1465

EPA 5030B

EPA 8260B

Page 2 of 2

Date/Time

Analyzed 07/22/10

02:04

MDL

0.26

0.28

0.36

0.22

6.9

0.23

0.26

2.6

4.4

2.5

0.79

0.30

0.35

0.44

0.51

0.33

0.31

0.49

0.45

0.64

0.54

0.30

0.31

1.3

0.24 0.23

7.1

0.33

0.45

0.24

0.30

0.31

0.27

0.28

50

Date

Prepared

07/21/10

Result

ND

RL

1.0

0.50

0.50

1.0

10

1.0

1.0

10

10

10

1.0

1.0

1.0

1.0

1.0

1.0

1.0

10

1.0

10

1.0

1.0

10

5.0

1.0

1.0

10

0.50

1.0

1.0

1.0

2.0

2.0

2.0

100

Control Limits

80-131

80-120

ug/L

QC Batch ID

100721L02

DF

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

1

1

1

1 1

1

1

1

1

1

1

1

1

1

1

Qual

Qual

IN ACCOR

AMEC Geomatrix, Inc. Date Received: 510 Superior Avenue Work Order No: Suite 200 Preparation: Newport Beach, CA 92663-3627 Method: Units: Project: SFPP - Norwalk Site Lab Sample Date/Time Collected Matrix Instrument **Client Sample Number** Number Method Blank 099-14-001-1,453 N/A GC/MS EE Aqueous Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Result RL MDL DF Qual Parameter Parameter Acetone ND 50 20 1 1.1-Dichloropropene Benzene ND 0.50 0.28 1 c-1.3-Dichloropropene 1 Bromobenzene ND 1.0 0.33 t-1,3-Dichloropropene ND 1 Bromochloromethane 1.0 0.69 Ethylbenzene ND 1.0 0.33 1 2-Hexanone Bromodichloromethane Bromoform ND 1.0 0.55 1 Isopropylbenzene 1 Bromomethane ND 10 4.3 p-Isopropyltoluene 2-Butanone ND 10 6.9 1 Methylene Chloride n-Butylbenzene ND 1.0 0.28 1 4-Methyl-2-Pentanone sec-Butylbenzene 1 ND 1.0 0.20 Naphthalene tert-Butylbenzene ND 0.28 1 n-Propylbenzene 1.0 1 Carbon Disulfide ND 10 1.9 Styrene Carbon Tetrachloride 0.50 1 1,1,1,2-Tetrachloroethane ND 0.43 Chlorobenzene ND 0.22 1 1.0 1.1.2.2-Tetrachloroethane Chloroethane ND 5.0 1.3 1 Tetrachloroethene Chloroform ND 1.0 0.33 1 Toluene Chloromethane ND 10 0.49 1 1.2.3-Trichlorobenzene 2-Chlorotoluene ND 1.0 0.55 1 1,2,4-Trichlorobenzene 1 4-Chlorotoluene ND 1.0 0.21 1,1,1-Trichloroethane Dibromochloromethane ND 1.0 0.48 1 1,1,2-Trichloro-1,2,2-Trifluoroethane 1,2-Dibromo-3-Chloropropane 5.0 1 1,1,2-Trichloroethane ND 3.1 1,2-Dibromoethane 1.0 0.47 1 Trichloroethene ND Dibromomethane ND 1.0 0.59 1 Trichlorofluoromethane 1,2-Dichlorobenzene ND 1.0 0.27 1 1,2,3-Trichloropropane 1,3-Dichlorobenzene ND 1.0 0.28 1 1,2,4-Trimethylbenzene 1,4-Dichlorobenzene ND 1.0 0.21 1 1,3,5-Trimethylbenzene 1 Dichlorodifluoromethane ND 1.0 0.49 Vinyl Acetate 0.37 1 Vinyl Chloride 1.1-Dichloroethane ND 1.0

ND ND ND ND ND 1.2-Dichloroethane ND 0.50 0.31 1 p/m-Xylene ND 0.40 1 1.1-Dichloroethene ND 1.0 o-Xylene ND ND 0.49 1 c-1.2-Dichloroethene 1.0 Methyl-t-Butyl Ether (MTBE) ND ND 0.40 1 t-1,2-Dichloroethene 1.0 Diisopropyl Ether (DIPE) ND 1,2-Dichloropropane ND 1.0 0.38 1 Ethyl-t-Butyl Ether (ETBE) ND 1 1,3-Dichloropropane ND 1.0 0.38 Tert-Amyl-Methyl Ether (TAME) ND 2,2-Dichloropropane ND 1.0 0.46 1 Ethanol ND <u>REC (%)</u> Surrogates: <u>REC (%)</u> Control Qual Limits Dibromofluoromethane 104 80-126 1.2-Dichloroethane-d4 104 80-120 100 1,4-Bromofluorobenzene 92

AMA

Surrogates:

Toluene-d8

RL - Reporting Limit DF - Dilution Factor

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

AMEC Geomatrix, Inc.	Date Received:	07/20/10
510 Superior Avenue	Work Order No:	10-07-1465
Suite 200	Preparation:	EPA 5030B
Newport Beach, CA 92663-3627	Method:	EPA 8015B (M)

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1459-1	Aqueous	GC 25	07/22/10		07/23/10	100722S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	70	69	68-122	1	0-18	

RPD - Relative Percent Difference, CL - Control Limit

ha 7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 ·

FAX: (714) 894-7501

AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627

07/20/10
10-07-1465
EPA 5030B
EPA 8260B

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-1261-3	Aqueous	GC/MS EE	07/21/10		07/22/10	100721S02
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	90	90	80-120	1	0-20	
Carbon Tetrachloride	78	78	55-151	1	0-20	
Chlorobenzene	99	101	80-120	1	0-20	
1,2-Dibromoethane	100	100	77-125	0	0-20	
1,2-Dichlorobenzene	100	98	78-120	2	0-20	
1,2-Dichloroethane	98	101	80-120	2	0-20	
1,1-Dichloroethene	106	105	69-129	1	0-20	
Ethylbenzene	95	97	73-127	1	0-20	
Toluene	86	88	80-120	2	0-20	
Trichloroethene	91	95	67-133	4	0-20	
Vinyl Chloride	98	98	67-133	1	0-20	
Methyl-t-Butyl Ether (MTBE)	84	83	65-131	1	0-22	
Tert-Butyl Alcohol (TBA)	94	100	62-134	6	0-20	
Diisopropyl Ether (DIPE)	89	88	64-136	2	0-29	
Ethyl-t-Butyl Ether (ETBE)	83	82	70-124	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	82	84	71-125	2	0-20	
Ethanol	115	116	44-152	1	0-43	

RPD - Relative Percent Difference, CL - Control Limit

7440 Linco

AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627

Date Received:	N/A
Work Order No:	10-07-1465
Preparation:	EPA 3510C
Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz	ed	LCS/LCSD Batc Number	h
099-12-384-28	Aqueous	GC 49	07/23/10	07/24/1	0	100723B28	
Parameter	LCS %	REC LCSE	%REC	%REC CL	RPD	RPD CL	Qualifiers
TPH as Fuel Product	97	10	5	75-117	8	0-13	

RPD - Relative Percent Difference, CL - Control Limit

AMEC Geomatrix, Inc. 510 Superior Avenue Suite 200 Newport Beach, CA 92663-3627

Date Received:	N/A
Work Order No:	10-07-1465
Preparation:	EPA 5030B
Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepare	Da ed Anal	ate yzed	LCS/LCSD Bate Number	h
099-12-247-4,359	Aqueous	GC 25	07/22/1	0 07/2	3/10	100722B01	
Parameter	LCS %	<u> AREC LCSE</u>	%REC	<u>%REC CL</u>	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	82	8	3	78-120	1	0-10	

RPD - Relative Percent Difference, CL - Control Limit

AMEC Geomatrix, Inc.
510 Superior Avenue
Suite 200
Newport Beach, CA 92663-3627

Date Received:	
Work Order No:	
Preparation:	
Method:	

N/A 10-07-1465 EPA 5030B EPA 8260B

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD I Numbe	Batch
099-14-001-1,453	Aqueous	GC/MS EE	07/21/10	07/22	/10	100721L)2
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	90	97	80-120	73-127	7	0-20	
Carbon Tetrachloride	77	83	67-139	55-151	8	0-22	
Chlorobenzene	100	106	80-120	73-127	6	0-20	
1,2-Dibromoethane	101	108	80-120	73-127	7	0-20	
1,2-Dichlorobenzene	101	109	79-120	72-127	8	0-20	
1,2-Dichloroethane	99	106	80-120	73-127	7	0-20	
1,1-Dichloroethene	108	98	71-125	62-134	10	0-25	
Ethylbenzene	97	103	80-123	73-130	6	0-20	
Toluene	86	92	80-120	73-127	7	0-20	
Trichloroethene	96	101	80-120	73-127	5	0-20	
Vinyl Chloride	95	103	68-140	56-152	8	0-23	
Methyl-t-Butyl Ether (MTBE)	83	89	75-123	67-131	7	0-25	
Tert-Butyl Alcohol (TBA)	99	103	72-126	63-135	4	0-20	
Diisopropyl Ether (DIPE)	89	94	75-129	66-138	6	0-22	
Ethyl-t-Butyl Ether (ETBE)	82	88	76-124	68-132	8	0-20	
Tert-Amyl-Methyl Ether (TAME)	83	91	79-121	72-128	9	0-20	
Ethanol	129	132	53-143	38-158	2	0-25	

Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

nM

RPD - Relative Percent Difference, CL - Control Limit

hM

Glossary of Terms and Qualifiers

Work Order Number: 10-07-1465

<u>Qualifier</u>	Definition
*	See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

UN T	iscience nvironmental 	7440 LINCOLN WAY GARDEN GROVE, CA 928	41-1432											U S S S	I III	DF CUS	TODY ℃	RECORD	j.
•	aboratones, IAC.	TEL: (714) 895-5494 . FAX	: (714) 894-1	7501										PAG	 jį	4	- F	-	
LABOR (ind)	MTORY CLIENT: er Morgan Energy iss:	Partners, Attn: Steve D	efibaugh				SFF	P - N	NAME / Drwał	k Sit						P.O. N	:0		
5	Town & Country R	load					PROJEC	T CONTA	cT:		\					QUOTI	E NO.:		
Dran	ge, CA 92868					.	SAMPLE			X	Nt-					I AB U	SE ONLY		
TEL:	714-560-4802	FAX: 714-560-460		E-MAIL james dye@k	indermorga	n.com		1	/	$\overline{\ }$	4			1		୭	H -H	465]
TURN [™]	ROUND TIME	R 1 48HR 1 72 HR	5 D/	\S∧	10 DA	γs	$\backslash \setminus$					REQ	UES	TED	ANA	TYSIS			
	AL REQUIREMENTS (ADDITION)	AL COSTS MAY APPLY)	C I INTII	-	-	5	<u> </u>			(203	(000								
Rec.	AL INSTRUCTIONS	t Geomatrix, cc: KMEP									20/21-76								
ā?	ect Bill KMEP/SFP	P - Steve Defibaugh-rei e lowest possible deter	f. AFE# 8 [.] ction limi	1195 t - all me	ethods	<u> </u>		(9		(Maros)	(S.((2.03r) sb		(0209'66	TA				
			SAMP	LING		NO. OF		8560	(1.5	(Aju	(16C	ios I	(12'6	ТЯН				
- 1 - 1 - 1						CON I.	(W)	3) 1s	E14)	07	sbil	pəp	(1.0	991	- 77 -				
LAB USE ONLY	SAMPLEID	LOCATION' DESCRIPTION	DATE	TIME	MAT- RIX	·	2108) g - H9T 	VOCs, Full Lig	oil & Grease	10-20) g-H9T	Settleable Sol		Phenolics (42)nጋ,(IV),Cu(, no muinala8		Comme	됩	
	INF. 87-20	Influent	11-96-73	1230	M	2	Â	×		┢	-	ļ		┢	-	Temperat	ture* = _	76.5	
												<u> </u>		<u> </u>					
											\vdash					(Ten	np. as si	ampled*)	
							-					ļ							
												[i				Monthly			
and a second																			
																		1	
							\vdash		╞			ļ							1
							┢──	\square	\vdash	+	╞			+	┢				
Reling	uished by: (8(gnature)	M			Receive	ed by: (Si	jnature)	à	101	5NV	Ly		2	1	1	Date: /20	10	8t. 2/	1
Reling	uished by (Signature)				Receive	is) :Vd bi	gnature)			4						Date /	<u> </u>	īme:	
Reling	ushed by: (Signature)				Receive	əd by: (Si	jnature)									Date:		ime:	
Revis	ed: 07/23/09																		

I.

<i>2</i>				Pag	ge 13 of 13
Calscience Environmental	WOR	K ORDER #:	10-07	7-14	65
Laboratories, Inc.	REC			ooler	lof
DAMILLE NAT D					
CLIENT: <u>KME</u>			DATE:	0//2	0/10
TEMPERATURE: Thermometer ID: SC1 (Crite	əria: 0.0 °C -	6.0 °C, not frozen)		
Temperature ² . <i>O</i> °C + 0.5 °C (C	F) =?	<u>, 5</u> °C [Blank	🛛 Samp	ple
Sample(s) outside temperature criteria (PM/Al	PM contacte	d by:).			
□ Sample(s) outside temperature criteria but rec	eived on ice	/chilled on same da	ay of sampli	ng.	
☐ Received at ambient temperature, placed	on ice for	transport by Co	urier.		,
Ambient Temperature: 🗆 Air 🛛 Filter 🛛	⊐ Metals O	nly 🗆 PCBs C	Dnly	Initia	al: <u> </u>
CUSTODY SEALS INTACT:		-			h/
□ Cooler □ □ No (No	t Intact)	Not Present	□ N/A	Initi	al:
□ Sample □ □ No (No	t Intact)	☑ Not Present		Initi	al: <u>87/</u>
SAMPLE CONDITION			Kes	No	NI/A
Chaip-Of-Custody (COC) document(s) received	d with same	les	г . с.,		
COC document(s) received complete			_ Z	· 🗆	
\Box Collection date/time matrix and/or # of containers	logged in bas	ed on sample labels	_		
	□ No date/tir	ne relinquished			
Sampler's name indicated on COC			X	Π	
Sample container label(s) consistent with COC	,		_ Z		
Sample container(s) intact and good condition.					
Proper containers and sufficient volume for ana	alyses requ	ested	Z		
Analyses received within holding time			б		
pH / Residual Chlorine / Dissolved Sulfide rece	vived within	24 hours			Z
Proper preservation noted on COC or sample of	container		e E		
□ Unpreserved vials received for Volatiles analys	sis				
Volatile analysis container(s) free of headspace	ә		Ł		
Tedlar bag(s) free of condensation	•••••				Ø
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □]Sleeve () □EnCores	® ⊡Terra	Cores [®] □	
Water: □VOA ☑VOAh □VOAna₂ □125AGE	3 □125AG	Bh □125AGBp	□1AGB	⊒1AGB na ₂	□1AGB s
□500AGB Ø500AGJ □500AGJs □250AG	B □250C	GB □250CGBs	□1PB	□500PB □	500PB na
□250PB □250PBn □125PB □125PBznna	□100PJ []100PJ na₂ □]
Air: □Tedlar [®] □Summa [®] Other: □ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p:	_ Trip Bla Bottle Z: Ziplo H ₃ PO ₄ s: H ₂ SO	nk Lot#: c/Resealable Bag E: E 4 znna: ZnAc2+NaOH f:	_ Labeled/ Envelope I Field-filtered	Checked by Reviewed by Scanned b	y: <u>UB</u> y: <u>UB</u> y: <u>UB</u>

i i i zavala a

I .

SOP	T100	090 /	(05/1	0/10)
	1100		10001	0,10,

Page 1 of 14

August 10, 2010

Dan Jablonski CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Subject: Calscience Work Order No.: 10-08-0164 Client Reference: SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 08/03/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Client:	CH2M Hill 1000 Wilshire Blvd.	Work Order: Project name:	10-08-0164 SFPP - Norwalk Site
	21st Floor	Received:	08/03/10 16:48
Attn:	Dan Jablonski		

	DETE	CTIONS SU	MMARY			
Client Sample ID Analyte	Result	Qualifiers	Reporting Limit	Units	Method	Extraction
INF-8-3-10						
TPH as Fuel Product	1500		500	ug/L	EPA 8015B (M)	EPA 3510C
TPH as Gasoline	3400		100	ug/L	EPA 8015B (M)	EPA 5030B
Benzene	1400		10	ug/L	EPA 8260B	EPA 5030B
Ethylbenzene	17	J	4.4*	ug/L	EPA 8260B	EPA 5030B
Toluene	140		20	ug/L	EPA 8260B	EPA 5030B
1,2,4-Trimethylbenzene	29		20	ug/L	EPA 8260B	EPA 5030B
1,3,5-Trimethylbenzene	14	J	4.6*	ug/L	EPA 8260B	EPA 5030B
p/m-Xylene	110		20	ug/L	EPA 8260B	EPA 5030B
o-Xylene	51		20	ug/L	EPA 8260B	EPA 5030B
Methyl-t-Butyl Ether (MTBE)	390		20	ug/L	EPA 8260B	EPA 5030B
Tert-Butyl Alcohol (TBA)	7000		200	ug/L	EPA 8260B	EPA 5030B
Diisopropyl Ether (DIPE)	18	J	6.2*	ug/L	EPA 8260B	EPA 5030B

Subcontracted analyses, if any, are not included in this summary.

*MDL is shown.

CH2M Hill	Date Received:	08/03/10
1000 Wilshire Blvd.	Work Order No:	10-08-0164
21st Floor	Preparation:	EPA 3510C
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)
Project: SFPP - Norwalk Site		Page 1 of 1

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sampl Number	е	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-8-3-10		10-08-010	64-1-G	08/03/10 15:30	Aqueous	GC 27	08/06/10	08/07/10 08:40	100806B09
Comment(s): -Results were evaluate	ted to the MDL,	concentrations >	= to the I	MDL but < RI	_, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Fuel Product Surrogates:	1500 <u>REC (%)</u>	500 <u>Control Limits</u>	430 <u>MDL</u>	1		Qual	ug/L		
Decachlorobiphenyl	113	68-140							
Method Blank		099-12-38	84-29	N/A	Aqueous	GC 27	08/06/10	08/07/10 07:47	100806B09
Comment(s): -Results were evalua	ted to the MDL,	concentrations >	= to the l	MDL but < RI	_, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Fuel Product Surrogates:	ND <u>REC (%)</u>	500 <u>Control Limits</u>	430 <u>MDL</u>	1		Qual	ug/L		
Decachlorobiphenyl	121	68-140							

n M

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

IN ACCORD

CH2M Hill	Date Received:	08/03/10
1000 Wilshire Blvd.	Work Order No:	10-08-0164
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sampl Number	le	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-8-3-10		10-08-01	64-1-E	08/03/10 15:30	Aqueous	GC 42	08/04/10	08/04/10 19:56	100804B01
Comment(s): -Results were evaluate	ted to the MDL,	concentrations >	= to the N	/IDL but < RI	L, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	3400	100	48	1			ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits	MDL			<u>Qual</u>			
1,4-Bromofluorobenzene	108	38-134							
Method Blank		099-12-24	47-4,387	N/A	Aqueous	GC 42	08/04/10	08/04/10 12:00	100804B01
Comment(s): -Results were evaluate	ted to the MDL,	concentrations >	= to the N	/IDL but < RI	L, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u> </u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	ND	100	48	1			ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits	MDL			<u>Qual</u>			
1.4-Bromofluorobenzene	93	38-134							

RL - Reporting Limit , DF - Dilution Factor Qual - Qualifiers ,

n.M

IN ACCORD

Page 1 of 1

Page 5 of 14

CH2M Hill						Date R	eceived:				30	8/03/1	0
1000 Wilshire Blvd.						Work C)rder No [.]				10-0	8-016	4
21st Floor						Dronar	ation.					5020	
	7 0 4 4 7					Mathad						0000	
Los Angeles, CA 9001	(-2417					IVIEthoo					EPA	8260	В
						Units:						ug/	L
Project: SFPP - Norwa	lk Site										Page	e 1 of	2
Client Sample Number			Lab S Nur	Sample mber		Date/Time Collected	Matrix	Instrument	Date Prepa	e D red /	Date/Time Analyzed	QC Bat	tch ID
INF-8-3-10			10-08	-0164-1	-A	08/03/10 15:30	Aqueous	GC/MS EE	08/05/	10	08/05/10 23:53	100805	5L01
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentra	tions >=	to the N	/IDL but < RL	, if found, are	e qualified wi	th a "J" flao	g.			
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qual	Parameter			Result	RL	MDL	DF	<u>Qua</u>
Acetone	ND	1000	400	20		c-1,3-Dichl	oropropene		ND	10	5.7	20	
Benzene	1400	10	5.7	20		t-1,3-Dichlo	propropene		ND	10	7.2	20	
Bromobenzene	ND	20	6.7	20		Ethylbenze	ne		17	20	4.4	20	J
Bromochloromethane	ND	20	14	20		2-Hexanone	e		ND	200	140	20	
Bromodichloromethane	ND	20	6.6	20		Isopropylbe	enzene		ND	20	4.5	20	
Bromoform	ND	20	11	20		p-Isopropyl	toluene		ND	20	5.2	20	
Bromomethane	ND	200	86	20		Methylene (Chloride		ND	200	52	20	
2-Butanone	ND	200	140	20		4-Methyl-2-	Pentanone		ND	200	88	20	
n-Butylbenzene	ND	20	5.5	20		Naphthalen	e		ND	200	51	20	
sec-Butylbenzene	ND	20	4.1	20		n-Propylbei	nzene		ND	20	16	20	
tert-Butylbenzene	ND	20	5.5	20		Styrene			ND	20	6.0	20	
Carbon Disulfide	ND	200	38	20		1,1,1,2-Tet	rachloroethai	ne	ND	20	7.0	20	
Carbon Tetrachloride	ND	10	8.5	20		1,1,2,2-Tet	rachloroethar	ne	ND	20	8.8	20	
Chlorobenzene	ND	20	4.4	20		Tetrachloro	ethene		ND	20	10	20	
Chloroethane	ND	100	26	20		Toluene			140	20	6.5	20	
Chloroform	ND	20	6.6	20		1,2,3-Trich	lorobenzene		ND	20	6.1	20	
Chloromethane	ND	200	9.7	20		1,2,4-Trich	lorobenzene		ND	20	9.7	20	
2-Chlorotoluene	ND	20	11	20		1,1,1-Trich	loroethane		ND	20	9.0	20	
4-Chlorotoluene	ND	20	4.2	20		1,1,2-Trich	loro-1,2,2-Tri	fluoroethane	ND	200	13	20	
Dibromochloromethane	ND	20	9.7	20		1,1,2-Trich	loroethane		ND	20	11	20	
1,2-Dibromo-3-Chloropropane	ND	100	62	20		Trichloroeth	nene		ND	20	6.1	20	
1,2-Dibromoethane	ND	20	9.3	20		Trichloroflu	oromethane		ND	200	6.2	20	
Dibromomethane	ND	20	12	20		1,2,3-Trich	loropropane		ND	100	27	20	
1,2-Dichlorobenzene	ND	20	5.4	20		1,2,4-Trime	ethylbenzene		29	20	4.9	20	
1,3-Dichlorobenzene	ND	20	5.7	20		1,3,5-Trime	ethylbenzene		14	20	4.6	20	J
1,4-Dichlorobenzene	ND	20	4.2	20		Vinyl Aceta	te		ND	200	140	20	
Dichlorodifluoromethane	ND	20	9.8	20		Vinyl Chlori	de		ND	10	6.5	20	
1,1-Dichloroethane	ND	20	7.5	20		p/m-Xylene			110	20	9.1	20	
1,2-Dichloroethane	ND	10	6.3	20		o-Xylene			51	20	4.7	20	
1,1-Dichloroethene	ND	20	8.0	20		Methyl-t-Bu	ityl Ether (M7	TBE)	390	20	6.1	20	
c-1,2-Dichloroethene	ND	20	9.7	20		Tert-Butyl A	Alcohol (TBA)	7000	200	71	20	
t-1,2-Dichloroethene	ND	20	8.1	20		Diisopropyl	Ether (DIPE)	18	40	6.2	20	J
1,2-Dichloropropane	ND	20	7.6	20		Ethyl-t-Buty	/I Ether (ETB	E)	ND	40	5.3	20	
1,3-Dichloropropane	ND	20	7.6	20		Tert-Amyl-N	Methyl Ether	(TAME)	ND	40	5.7	20	
2,2-Dichloropropane	ND	20	9.2	20		Ethanol			ND	2000	1000	20	
1,1-Dichloropropene	ND	20	5.1	20									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qı</u>	<u>ual</u>		Surrogates:	<u>.</u>		<u>REC (%)</u>	Contr Limits	r <u>ol Q</u> s	<u>ual</u>	
Dibromofluoromethane	106	80-126				1.2-Dichlor	oethane-d4		117	80-13			
Toluene-d8	98	80-120				1.4-Bromof	luorobenzen	,	92	80-12	20		
						.,. 2.001		-					

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

TED IN ACCORDAN

CH2M Hill						Date R	eceived:				08	8/03/1	0
1000 Wilshire Blvd						Work C	Inder No.				10-0	8-016	1
												5-010	4
21st Floor						Prepara	ation:				EPA	50301	З
Los Angeles, CA 90017	7-2417					Method	d:				EPA	8260	В
						Units:						ug/l	L
Project: SFPP - Norwa	lk Site										Page	e 2 of 2	2
Client Sample Number			Lab Sa	mple		Date/Time	Matrix	Instrument	Date	D sod	ate/Time	QC Bat	ch ID
			Num			Collected			Fiepa				
Method Blank			099-14	•001-1,	,621	N/A	Aqueous	GC/MS EE	08/05/	10 4	15:07	100805	5L01
Comment(s): -Results were	evaluated to th	ne MDL, co	oncentratio	ons >=	to the N	/IDL but < RL	, if found, are	e qualified wit	th a "J" flao	g.			
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	MDL	DF	Qual
Acetone	ND	50	20	1		c-1,3-Dichl	oropropene		ND	0.50	0.28	1	
Benzene	ND	0.50	0.28	1		t-1,3-Dichlo	propropene		ND	0.50	0.36	1	
Bromobenzene	ND	1.0	0.33	1		Ethylbenze	ne		ND	1.0	0.22	1	
Bromochloromethane	ND	1.0	0.69	1		2-Hexanon	е		ND	10	6.9	1	
Bromodichloromethane	ND	1.0	0.33	1		Isopropylbe	enzene		ND	1.0	0.23	1	
Bromoform	ND	1.0	0.55	1		p-Isopropyl	toluene		ND	1.0	0.26	1	
Bromomethane	ND	10	4.3	1		Methylene	Chloride		ND	10	2.6	1	
2-Butanone	ND	10	6.9	1		4-Methyl-2-	Pentanone		ND	10	4.4	1	
n-Butylbenzene	ND	1.0	0.28	1		Naphthaler	ne		ND	10	2.5	1	
sec-Butylbenzene	ND	1.0	0.20	1		n-Propyibe	nzene		ND	1.0	0.79	1	
tert-Butylbenzene	ND	1.0	0.28	1		Styrene			ND	1.0	0.30	1	
Carbon Disulfide	ND	10	1.9	1		1,1,1,2-1 et	rachioroethar	ie	ND	1.0	0.35	1	
Carbon l etrachioride	ND	0.50	0.43	1		1,1,2,2-1 et	rachioroethar	ie	ND	1.0	0.44	1	
Chlorobenzene	ND	1.0	0.22	1		Tetrachioro	betnene			1.0	0.51	1	
Chloroetnane	ND	5.0	1.3	1						1.0	0.33	1	
Chloromothono		1.0	0.33	1		1,2,3-111Ch				1.0	0.31	1	
		10	0.49	1		1,2,4-111Ch	loroothono			1.0	0.49	1	
		1.0	0.00	1		1,1,1-111Ch		flueroetheroe		1.0	0.45	1	
4-Chiololouene		1.0	0.21	1		1,1,2-111Ch	loroothono	nuoroetnane		10	0.04	1	
1 2 Dibromo 2 Chloropropopo		1.0 E O	0.40	1		Trichloroot	hono			1.0	0.04	1	
1,2-Dibromosthano		1.0	0.47	1		Trichloroflu	loromothana			1.0	0.30	1	
Dibromomothano		1.0	0.47	1		1 2 2 Trich	loropropapa			5.0	13	1	
		1.0	0.33	1		1,2,3-THCH	othylbonzono			1.0	0.24	1	
1 3-Dichlorobenzene		1.0	0.27	1		1,2,4-Think	thylbenzene			1.0	0.24	1	
1 4-Dichlorobenzene		1.0	0.20	1		Vinvl Aceta				10	7.1	1	
Dichlorodifluoromethane		1.0	0.21	1		Vinyl Chlor	ide			0.50	0.33	1	
1 1-Dichloroethane		1.0	0.40	1		n/m-Xylene				1.0	0.00	1	
1 2-Dichloroethane	ND	0.50	0.31	1		o-Xvlene	•		ND	1.0	0.10	1	
1 1-Dichloroethene	ND	1.0	0.40	1		Methyl-t-Bi	utvl Ether (MT	BE)	ND	1.0	0.30	1	
c-1 2-Dichloroethene		1.0	0.49	1		Tert-Butyl		82)	ND	10	3.5	1	
t-1 2-Dichloroethene	ND	1.0	0.40	1		Diisopropyl	Ether (DIPE		ND	2.0	0.31	1	
1 2-Dichloropropane	ND	1.0	0.38	1		Ethyl-t-Buty	I Ether (ETB	, F)	ND	2.0	0.27	1	
1.3-Dichloropropane	ND	1.0	0.38	1		Tert-Amvl-I	Methyl Fther	(TAME)	ND	2.0	0.28	1	
2.2-Dichloropropane	ND	1.0	0.46	1		Ethanol		(···· -)	ND	100	50	1	
1,1-Dichloropropene	ND	1.0	0.26	1									
			•			Current -				0			
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>		Surrogates	-		<u>keu (%)</u>	<u>Control</u> Limits	<u>oi Q</u>	uai	
Dibromofluoromethane	104	80-126				1,2-Dichlor	oethane-d4		111	80-13	1		
Toluene-d8	98	80-120				1,4-Bromof	luorobenzene	;	94	80-12	0		

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 6 of 14

CH2M Hill	Date Received:	08/03/10
1000 Wilshire Blvd.	Work Order No:	10-08-0164
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-07-2412-2	Aqueous	GC 42	08/04/10		08/04/10	100804S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	84	80	68-122	5	0-18	

RPD - Relative Percent Difference, CL - Control Limit

h M

CH2M Hill 1000 Wilshiro Blvd	Date Received: Work Order No:	08/03/10 10-08-0164
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8260B

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-08-0187-1	Aqueous	GC/MS EE	08/05/10		08/05/10	100805S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	100	97	80-120	3	0-20	
Carbon Tetrachloride	113	109	55-151	3	0-20	
Chlorobenzene	101	99	80-120	2	0-20	
1,2-Dibromoethane	106	102	77-125	3	0-20	
1,2-Dichlorobenzene	102	100	78-120	2	0-20	
1,2-Dichloroethane	111	106	80-120	5	0-20	
1,1-Dichloroethene	94	93	69-129	2	0-20	
Ethylbenzene	109	106	73-127	3	0-20	
Toluene	99	96	80-120	3	0-20	
Trichloroethene	101	99	67-133	2	0-20	
Vinyl Chloride	111	111	67-133	1	0-20	
Methyl-t-Butyl Ether (MTBE)	98	96	65-131	3	0-22	
Tert-Butyl Alcohol (TBA)	103	102	62-134	1	0-20	
Diisopropyl Ether (DIPE)	102	99	64-136	3	0-29	
Ethyl-t-Butyl Ether (ETBE)	99	96	70-124	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	100	99	71-125	1	0-20	
Ethanol	103	101	44-152	2	0-43	

RPD - Relative Percent Difference, CL - Control Limit

Mulhan_

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-0164
21st Floor	Preparation:	EPA 3510C
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz	ed	LCS/LCSD Batc Number	h
099-12-384-29	Aqueous	GC 27	08/06/10	08/07/	10	100806B09	
Parameter	<u>LCS %</u>	<u> KREC LCSD</u>	%REC <u>%</u>	6REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Fuel Product	112	11:	2	75-117	0	0-13	

RPD - Relative Percent Difference, CL - Control Limit

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-0164
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	I	LCS/LCSD Batc Number	h
099-12-247-4,387	Aqueous	GC 42	08/04/10	08/04/10		100804B01	
Parameter	<u>LCS %</u>	<u> KREC LCSD</u>	<u>%REC %</u>	REC CL	RPD	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	92	92		78-120	0	0-10	

RPD - Relative Percent Difference, CL - Control Limit

hM

N/A

10-08-0164 EPA 5030B EPA 8260B

CH2M Hill	Date Received
1000 Wilshire Blyd	Work Order No:
21ct Eleer	Proparation:
Los Angeles, CA 90017-2417	Method:

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal <u>y</u>	ite yzed	LCS/LCSD E Number	Batch
099-14-001-1,621	Aqueous	GC/MS EE	08/05/10	08/05/	/10	100805L0	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	95	99	80-120	73-127	4	0-20	
Carbon Tetrachloride	107	111	67-139	55-151	4	0-22	
Chlorobenzene	95	100	80-120	73-127	6	0-20	
1,2-Dibromoethane	97	106	80-120	73-127	8	0-20	
1,2-Dichlorobenzene	95	103	79-120	72-127	8	0-20	
1,2-Dichloroethane	103	109	80-120	73-127	6	0-20	
1,1-Dichloroethene	94	95	71-125	62-134	1	0-25	
Ethylbenzene	100	108	80-123	73-130	8	0-20	
Toluene	93	99	80-120	73-127	5	0-20	
Trichloroethene	95	99	80-120	73-127	4	0-20	
Vinyl Chloride	109	111	68-140	56-152	2	0-23	
Methyl-t-Butyl Ether (MTBE)	92	98	75-123	67-131	6	0-25	
Tert-Butyl Alcohol (TBA)	97	102	72-126	63-135	5	0-20	
Diisopropyl Ether (DIPE)	95	101	75-129	66-138	7	0-22	
Ethyl-t-Butyl Ether (ETBE)	92	98	76-124	68-132	6	0-20	
Tert-Amyl-Methyl Ether (TAME)	95	100	79-121	72-128	6	0-20	
Ethanol	103	105	53-143	38-158	2	0-25	

Total number of LCS compounds : 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

nM

RPD - Relative Percent Difference, CL - Control Limit

hM

Work Order Number: 10-08-0164

Qualifier *	Definition See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

а се стали се страниција за тите се извршивани и ко

n. 111.

и на сели и полоти с на сталодира се на

	Page 14 of
WORK ORDER # 10-08	B-COT6C
SAMPLE RECEIPT FORM	Cooler <u> </u>
CLIENT: KINDER MORGAN ENERGY PARTNERS DATE: _	08/03/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not frozen)	
Temperature $\underline{\gamma} \cdot \underline{\rho}^{\circ} C + 0.5 {}^{\circ} C (CF) = \underline{\gamma} \cdot \underline{\sqrt{\rho}}^{\circ} C \Box$ Blank	Sample Sample
□ Sample(s) outside temperature criteria (PM/APM contacted by:).	•
□ Sample(s) outside temperature criteria but received on ice/chilled on same day of sampli	na.
Received at ambient temperature, placed on ice for transport by Courier.	
Ambient Temperature: Air Filter Metals Only PCBs Only	Initial: <u>PS</u>
	· · · · · · · · · · · · · · · · · · ·
Cooler	Initial. R
□ Sample □ □ No (Not Intact) □ Not Present	Initial: M
SAMPLE CONDITION: Yes	No N/A
Chain-Of-Custody (COC) document(s) received with samples	
COC document(s) received complete	
\Box Collection date/time, matrix, and/or # of containers logged in based on sample labels.	
🖾 No analysis requested. 🛛 Not relinquished. 🖾 No date/time relinquished.	
Sampler's name indicated on COC $ abla$	
Sample container label(s) consistent with COC	
Sample container(s) intact and good condition $ ag{}$	
Proper containers and sufficient volume for analyses requested	
Analyses received within holding time	
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours \Box	
Proper preservation noted on COC or sample container	
Unpreserved vials received for Volatiles analysis	
Volatile analysis container(s) free of headspace II	
Tedlar bag(s) free of condensation CONTAINER TYPE:	
Solid: □4ozCGJ □8ozCGJ □16ozCGJ □Sleeve () □EnCores [®] □Terrad	Cores® □
Water: □VOA ☑VOĂh □VOAna₂ □125AGB □125AGBh □125AGBp □1AGB [□1AGBna₂ □1AGBs
□500AGB 🗹 500AGJ □500AGJs □250AGB □250CGB □250CGBs □1PB [⊒500PB
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □ □	
Air: DTedlar [®] DSumma [®] Other: D Trip Blank Lot#: Labeled/ Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Zlploc/Resealable Bag E: Envelope F Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f: Field-filtered	Checked by: Reviewed by: _{ Scanned by: _{

-

SOP T100_090 (05/10/10)

1. v. 1. v. 40

ş

ł

TR-Long 1

a p

Page 1 of 16

August 10, 2010

Dan Jablonski CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Subject: Calscience Work Order No.: 10-08-0166 Client Reference: SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 08/03/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Case Narrative

Work Order # 10-08-0166 Modified EPA TO-14A or EPA TO-15

EPA Methods TO-14A and TO-15 describe gas chromatographic procedures that will allow for that separation of volatile organic compounds and their qualitative and quantitative analysis by mass spectrometry (GC/MS). A known volume of sample is directed from the container (Summa® canister or Tedlar[™] bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of EPA TO-14A/TO-15 versus Calscience EPA TO-14A/TO-15 (Modified)

Requirement	EPA Method	Calscience Modifications
BFB Acceptance Criteria	CLP Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, two analytes allowed <= 40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Not Mentioned	Analytes contained in the LCS standard evaluated against historical control limits for the LCS
Daily Calibration Verification (CCV)	Allowable % Difference for each Target Analyte is <= 30%	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%
		Target List Analysis: Allowable % Difference for each target analytes is <= 30%
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 40% (Range: 60% to 140%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 40% of the mean area response of most recent Initial Calibration (Range: 60% to 140%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	Not Mentioned	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Client:	CH2M Hill	Work Order:	10-08-0166
	1000 Wilshire Blvd.	Project name:	SFPP - Norwalk Site
	21st Floor	Received:	08/03/10 16:48
Attn:	Dan Jablonski		

	DETE	CTIONS SU	MMARY				
Client Sample ID	Result	Qualifiers	Reporting	Units	Method	Extraction	
	liooun	Qualificity	Linin	Onito			
VINF-08-03							
Carbon Dioxide	0.603		0.500	%v	ASTM D-1946	N/A	
Oxygen + Argon	20.4		0.500	%v	ASTM D-1946	N/A	
TPH as Gasoline	29		1.5	ppm (v/v)	EPA TO-3M	N/A	
Benzene	210		4.0	ppb (v/v)	EPA TO-15M	N/A	
2-Butanone	7.6	J	0.79*	ppb (v/v)	EPA TO-15M	N/A	
Chloroform	4.7		4.0	ppb (v/v)	EPA TO-15M	N/A	
Ethylbenzene	13		4.0	ppb (v/v)	EPA TO-15M	N/A	
4-Ethyltoluene	5.7		4.0	ppb (v/v)	EPA TO-15M	N/A	
Methyl-t-Butyl Ether (MTBE)	9.1	J	0.95*	ppb (v/v)	EPA TO-15M	N/A	
o-Xylene	22		4.0	ppb (v/v)	EPA TO-15M	N/A	
p/m-Xylene	63		16	ppb (v/v)	EPA TO-15M	N/A	
Toluene	64		40	ppb (v/v)	EPA TO-15M	N/A	
1,3,5-Trimethylbenzene	6.8		4.0	ppb (v/v)	EPA TO-15M	N/A	
1,2,4-Trimethylbenzene	17		12	ppb (v/v)	EPA TO-15M	N/A	
VCAT-08-03							
Carbon Dioxide	1.23		0.500	%v	ASTM D-1946	N/A	
Oxygen + Argon	19.5		0.500	%v	ASTM D-1946	N/A	
TPH as Gasoline	16		1.5	ppm (v/v)	EPA TO-3M	N/A	
Benzene	120		2.0	ppb (v/v)	EPA TO-15M	N/A	
2-Butanone	62		6.0	ppb (v/v)	EPA TO-15M	N/A	
Chloroform	2.3		2.0	ppb (v/v)	EPA TO-15M	N/A	
Ethylbenzene	6.0		2.0	ppb (v/v)	EPA TO-15M	N/A	
4-Ethyltoluene	2.0		2.0	ppb (v/v)	EPA TO-15M	N/A	
Methyl-t-Butyl Ether (MTBE)	1.8	J	0.48*	ppb (v/v)	EPA TO-15M	N/A	
o-Xylene	9.8		2.0	ppb (v/v)	EPA TO-15M	N/A	
p/m-Xylene	27		8.0	ppb (v/v)	EPA TO-15M	N/A	
Toluene	35		20	ppb (v/v)	EPA TO-15M	N/A	
1,3,5-Trimethylbenzene	2.4		2.0	ppb (v/v)	EPA TO-15M	N/A	
1,2,4-Trimethylbenzene	5.5	J	1.3*	ppb (v/v)	EPA TO-15M	N/A	

*MDL is shown.

Client:	CH2M Hill 1000 Wilshire Blvd.	Work Order: Project name:	10-08-0166 SFPP - Norwalk Site
	21st Floor	Received:	08/03/10 16:48
Attn:	Dan Jablonski		

DETECTIONS SUMMARY											
Client Sample ID			Reporting								
Analyte	Result	Qualifiers	Limit	Units	Method	Extraction					
VEFF-08-03											
Carbon Dioxide	1.23		0.500	%v	ASTM D-1946	N/A					
Oxygen + Argon	19.5		0.500	%v	ASTM D-1946	N/A					
TPH as Gasoline	8.4		1.5	ppm (v/v)	EPA TO-3M	N/A					
Acetone	410		250	ppb (v/v)	EPA TO-15M	N/A					
Benzene	13		0.50	ppb (v/v)	EPA TO-15M	N/A					
2-Butanone	170		7.5	ppb (v/v)	EPA TO-15M	N/A					
Chloroethane	14		0.50	ppb (v/v)	EPA TO-15M	N/A					
Chloroform	1.2		0.50	ppb (v/v)	EPA TO-15M	N/A					
Chloromethane	2.8		0.50	ppb (v/v)	EPA TO-15M	N/A					
Dichlorodifluoromethane	0.26	J	0.14*	ppb (v/v)	EPA TO-15M	N/A					
1,1-Dichloroethane	1.5		0.50	ppb (v/v)	EPA TO-15M	N/A					
1,2-Dichloroethane	1.0		0.50	ppb (v/v)	EPA TO-15M	N/A					
Ethylbenzene	0.68		0.50	ppb (v/v)	EPA TO-15M	N/A					
4-Ethyltoluene	0.24	J	0.18*	ppb (v/v)	EPA TO-15M	N/A					
2-Hexanone	42		1.5	ppb (v/v)	EPA TO-15M	N/A					
Methylene Chloride	3.3	J	1.0*	ppb (v/v)	EPA TO-15M	N/A					
4-Methyl-2-Pentanone	0.65	J	0.15*	ppb (v/v)	EPA TO-15M	N/A					
o-Xylene	1.0		0.50	ppb (v/v)	EPA TO-15M	N/A					
p/m-Xylene	3.1		2.0	ppb (v/v)	EPA TO-15M	N/A					
Toluene	3.6	J	2.0*	ppb (v/v)	EPA TO-15M	N/A					
1,1,2-Trichloroethane	0.63		0.50	ppb (v/v)	EPA TO-15M	N/A					
1,3,5-Trimethylbenzene	0.30	J	0.17*	ppb (v/v)	EPA TO-15M	N/A					
1,2,4-Trimethylbenzene	0.79	J	0.33*	ppb (v/v)	EPA TO-15M	N/A					
Vinyl Chloride	0.21	J	0.10*	ppb (v/v)	EPA TO-15M	N/A					

Subcontracted analyses, if any, are not included in this summary.

*MDL is shown.

A

Calscience nvironmental aboratories, Inc.

Date Received:

Work Order No:

Preparation:

CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Los Angeles, CA 90			ASTM D-1946						
Project: SFPP - No	rwalk Site							F	age 1 of 1
Client Sample Number		Lab Sample Number		Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VINF-08-03		10-08-	0166-1-A	08/03/10 15:35	Air	GC 36	N/A	08/03/10 17:59	100803L01
Comment(s): -Results were	e evaluated to the MDL	, concentration	s >= to the N	1DL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	ND	0.500	0.0981	1			%v		
Carbon Dioxide	0.603	0.500	0.344	1			%v		
Oxygen + Argon	20.4	0.500	0.370	1			%v		
VCAT-08-03		10-08-	0166-2-A	08/03/10 15:35	Air	GC 36	N/A	08/03/10 18:15	100803L01
Comment(s): -Results were	e evaluated to the MDL	, concentration	s >= to the N	1DL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>C</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	ND	0.500	0.0981	1			%v		
Carbon Dioxide	1.23	0.500	0.344	1			%v		
Oxygen + Argon	19.5	0.500	0.370	1			%v		
VEFF-08-03		10-08-	0166-3-A	08/03/10 15:35	Air	GC 36	N/A	08/03/10 18:32	100803L01
Comment(s): -Results were	e evaluated to the MDL	., concentration	s >= to the N	1DL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	Result	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	ND	0.500	0.0981	1			%v		
Carbon Dioxide	1.23	0.500	0.344	1			%v		
Oxygen + Argon	19.5	0.500	0.370	1			%v		
Method Blank		099-03	3-002-1,103	N/A	Air	GC 36	N/A	08/03/10 08:50	100803L01
Comment(s): -Results were	e evaluated to the MDL	, concentration	s >= to the N	1DL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>C</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	ND	0.500	0.0981	1			%v		
Carbon Dioxide	ND	0.500	0.344	1			%v		
Carbon Monoxide	ND	0.500	0.272	1			%v		
Oxygen + Argon	ND	0.500	0.370	1			%v		
Nitrogen	ND	0.500	0.174	1			%v		

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

h

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

08/03/10

N/A

10-08-0166

Calscience nvironmental aboratories, Inc.

Project: SFPP - Norwalk Site

CH2M Hill	Date Received:
1000 Wilshire Blvd.	Work Order No:
21st Floor	Preparation:
Los Angeles, CA 90017-2417	Method:
21st Floor Los Angeles, CA 90017-2417	Preparation: Method:

08/03/10 10-08-0166 N/A EPA TO-3M

Page 1 of 1

Client Sample Number		Lab Samı Numbe	Lab Sample Number		Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
VINF-08-03		10-08-0 ⁻	166-1-A	08/03/10 15:35	Air	GC 13	N/A	08/03/10 17:55	100803L01
Comment(s): -Results were evalu	ated to the MDL, o	concentrations :	>= to the N	/IDL but < RL	, if found, a	re qualified wit	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>D</u>	<u>)F</u>	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	29	1.5	0.17	1			ppm (v/v)		
VCAT-08-03		10-08-0 ⁻	166-2-A	08/03/10 15:35	Air	GC 13	N/A	08/03/10 18:05	100803L01
Comment(s): -Results were evalu	ated to the MDL, o	concentrations :	>= to the N	/IDL but < RL	, if found, a	re qualified wit	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>D</u>	<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline	16	1.5	0.17	1			ppm (v/v)		
VEFF-08-03		10-08-0 ⁻	166-3-A	08/03/10 15:35	Air	GC 13	N/A	08/03/10 18:18	100803L01
Comment(s): -Results were evalu	ated to the MDL, o	concentrations :	>= to the N	/IDL but < RL	, if found, a	re qualified wit	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>D</u>	<u>)</u> F	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	8.4	1.5	0.17	1			ppm (v/v)		
Method Blank		098-01-0	005-2,484	N/A	Air	GC 13	N/A	08/03/10 08:45	100803L01
Comment(s): -Results were evalu	ated to the MDL, o	concentrations	>= to the N	/IDL but < RL	, if found, a	re qualified wit	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>D</u>	<u>)F</u>	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	ND	1.5	0.17	1			ppm (v/v)		

N ACCORD

~	DINT	COR	DAN
24	200		Cr
400	he	12	
< I			

Page 7 of 16

VINF-08-03 10-08-0166-		08/03/10 Air GC/MS AA 15:35			N/A	08/03/10 100803L01 20:28				
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
Project: SFPP - Norwalk Site						Page	e 1 of 4			
LOS Angeles, CA 90017-2417	Units:	•		ppb (v/v)						
$\int dr \Delta r dr dr dr C \Delta 00017 2417$		Mothod					O 15M			
21st Floor		Prepara	ation:		N/A					
1000 Wilshire Blvd.		Work O	rder No	:		10-08-0166				
CH2M Hill		Date Re	eceived		08/03/10					

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

The method has been modified to use Tedlar bags instead of Summa Canisters

Parameter	Result	RL	MDL	DF	Qual	Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qual
Acetone	ND	400	200	8		t-1.2-Dichloroethene	ND	4.0	1.5	8	
Benzene	210	4.0	0.75	8		t-1,3-Dichloropropene	ND	8.0	0.82	8	
Benzyl Chloride	ND	12	3.2	8		Ethylbenzene	13	4.0	0.91	8	
Bromodichloromethane	ND	4.0	0.81	8		4-Ethyltoluene	5.7	4.0	1.5	8	
Bromoform	ND	4.0	1.2	8		Hexachloro-1,3-Butadiene	ND	12	1.4	8	
Bromomethane	ND	4.0	0.74	8		2-Hexanone	ND	12	4.1	8	
2-Butanone	7.6	12	0.79	8	J	Methyl-t-Butyl Ether (MTBE)	9.1	16	0.95	8	J
Carbon Disulfide	ND	80	40	8		Methylene Chloride	ND	40	8.0	8	
Carbon Tetrachloride	ND	4.0	0.79	8		4-Methyl-2-Pentanone	ND	12	1.2	8	
Chlorobenzene	ND	4.0	0.87	8		o-Xylene	22	4.0	0.97	8	
Chloroethane	ND	4.0	1.2	8		p/m-Xylene	63	16	6.1	8	
Chloroform	4.7	4.0	0.72	8		Styrene	ND	12	1.4	8	
Chloromethane	ND	4.0	0.78	8		Tetrachloroethene	ND	4.0	0.89	8	
Dibromochloromethane	ND	4.0	0.90	8		Toluene	64	40	16	8	
Dichlorodifluoromethane	ND	4.0	1.2	8		Trichloroethene	ND	4.0	0.86	8	
1,1-Dichloroethane	ND	4.0	0.82	8		Trichlorofluoromethane	ND	8.0	0.62	8	
1,1-Dichloroethene	ND	4.0	0.88	8		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	12	0.80	8	
1,2-Dibromoethane	ND	4.0	0.89	8		1,1,1-Trichloroethane	ND	4.0	0.80	8	
Dichlorotetrafluoroethane	ND	16	0.88	8		1,1,2-Trichloroethane	ND	4.0	0.97	8	
1,2-Dichlorobenzene	ND	4.0	0.88	8		1,3,5-Trimethylbenzene	6.8	4.0	1.3	8	
1,2-Dichloroethane	ND	4.0	0.76	8		1,1,2,2-Tetrachloroethane	ND	8.0	0.85	8	
1,2-Dichloropropane	ND	4.0	0.91	8		1,2,4-Trimethylbenzene	17	12	2.6	8	
1,3-Dichlorobenzene	ND	4.0	1.0	8		1,2,4-Trichlorobenzene	ND	16	5.8	8	
1,4-Dichlorobenzene	ND	4.0	1.1	8		Vinyl Acetate	ND	16	3.6	8	
c-1,3-Dichloropropene	ND	4.0	1.1	8		Vinyl Chloride	ND	4.0	0.81	8	
c-1,2-Dichloroethene	ND	4.0	1.1	8							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qu</u>	<u>ual</u>		Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	Qua	<u>al</u>	
1,4-Bromofluorobenzene	102	57-129				1,2-Dichloroethane-d4	105	47-137			
Toluene-d8	97	78-156									

Page 8 of 16

CH2M Hill			Date Received:								08/03/10					
1000 Wilshi	re Blvd.			Work Order No:							10-08-0166					
21st Floor				Preparation:								N/A				
Los Angeles	s, CA 90017-2417			Method:							EPA TO-15M					
-			Units:							ppb (v/v)						
Project: SF										Page 2 of 4						
Client Sample Nu	mber		Lab S Nui	Sample mber		Date/Time Collected	Matrix	Instrument	Date Prepa	e red	Date/Time Analyzed	QC Bat	ch ID			
VCAT-08-03			10-08	3-0166-2	2-A	08/03/10 15:35	Air	GC/MS AA	N/A		08/03/10 21:15	100803	L01			
Comment(s):	-Results were evaluated to t	the MDL, co	oncentra	ations >=	to the I	MDL but < RL	., if found, a	re qualified wit	h a "J" fla	g.						
	-The method has been mod	lified to use	e Tedlar I	bags ins	tead of	Summa Canis	sters.									
Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	<u>Qual</u>			

Parameter	Result	<u>NL</u>			Qua	<u>r ai ai i i elei</u>	Result	NL		DF	Qua
Acetone	ND	200	100	4		t-1,2-Dichloroethene	ND	2.0	0.75	4	
Benzene	120	2.0	0.38	4		t-1,3-Dichloropropene	ND	4.0	0.41	4	
Benzyl Chloride	ND	6.0	1.6	4		Ethylbenzene	6.0	2.0	0.46	4	
Bromodichloromethane	ND	2.0	0.41	4		4-Ethyltoluene	2.0	2.0	0.73	4	
Bromoform	ND	2.0	0.61	4		Hexachloro-1,3-Butadiene	ND	6.0	0.72	4	
Bromomethane	ND	2.0	0.37	4		2-Hexanone	ND	6.0	2.1	4	
2-Butanone	62	6.0	0.40	4		Methyl-t-Butyl Ether (MTBE)	1.8	8.0	0.48	4	J
Carbon Disulfide	ND	40	20	4		Methylene Chloride	ND	20	4.0	4	
Carbon Tetrachloride	ND	2.0	0.39	4		4-Methyl-2-Pentanone	ND	6.0	0.61	4	
Chlorobenzene	ND	2.0	0.43	4		o-Xylene	9.8	2.0	0.48	4	
Chloroethane	ND	2.0	0.62	4		p/m-Xylene	27	8.0	3.0	4	
Chloroform	2.3	2.0	0.36	4		Styrene	ND	6.0	0.72	4	
Chloromethane	ND	2.0	0.39	4		Tetrachloroethene	ND	2.0	0.44	4	
Dibromochloromethane	ND	2.0	0.45	4		Toluene	35	20	8.0	4	
Dichlorodifluoromethane	ND	2.0	0.58	4		Trichloroethene	ND	2.0	0.43	4	
1,1-Dichloroethane	ND	2.0	0.41	4		Trichlorofluoromethane	ND	4.0	0.31	4	
1,1-Dichloroethene	ND	2.0	0.44	4		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	6.0	0.40	4	
1,2-Dibromoethane	ND	2.0	0.45	4		1,1,1-Trichloroethane	ND	2.0	0.40	4	
Dichlorotetrafluoroethane	ND	8.0	0.44	4		1,1,2-Trichloroethane	ND	2.0	0.49	4	
1,2-Dichlorobenzene	ND	2.0	0.44	4		1,3,5-Trimethylbenzene	2.4	2.0	0.67	4	
1,2-Dichloroethane	ND	2.0	0.38	4		1,1,2,2-Tetrachloroethane	ND	4.0	0.42	4	
1,2-Dichloropropane	ND	2.0	0.46	4		1,2,4-Trimethylbenzene	5.5	6.0	1.3	4	J
1,3-Dichlorobenzene	ND	2.0	0.52	4		1,2,4-Trichlorobenzene	ND	8.0	2.9	4	
1,4-Dichlorobenzene	ND	2.0	0.54	4		Vinyl Acetate	ND	8.0	1.8	4	
c-1,3-Dichloropropene	ND	2.0	0.56	4		Vinyl Chloride	ND	2.0	0.40	4	
c-1,2-Dichloroethene	ND	2.0	0.53	4							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qı</u>	<u>ial</u>		Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qu</u>	<u>al</u>	
1,4-Bromofluorobenzene	102	57-129				1,2-Dichloroethane-d4	103	47-137			
Toluene-d8	97	78-156									

MM

Page 9 of 16

VEFF-08-03	10-08-0166-3-A	08/03/10 15:35	Air	GC/MS AA	N/A	08/03/10 22:04	100803L01
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: SFPP - Norwalk Site						Page	e 3 of 4
Los Angeles, CA 90017-2417		Method Units:	:			EPA T p	O-15M pb (v/v)
21st Floor		Prepara	ation:				N/A
1000 Wilshire Blvd.		Work O	rder No	:		10-0	8-0166
H2M Hill Date Received:				08/03/10			

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-The method has been modified to use Tedlar bags instead of Summa Canisters

Parameter	Result	RL	MDL	DF	Qual	Parameter	Result	RL	MDL	DF	Qual
Acetone	410	250	120	5		t-1.2-Dichloroethene	ND	0.50	0.19	1	
Benzene	13	0.50	0.094	1		t-1.3-Dichloropropene	ND	1.0	0.10	1	
Benzyl Chloride	ND	1.5	0.39	1		Ethylbenzene	0.68	0.50	0.11	1	
Bromodichloromethane	ND	0.50	0.10	1		4-Ethvltoluene	0.24	0.50	0.18	1	J
Bromoform	ND	0.50	0.15	1		Hexachloro-1,3-Butadiene	ND	1.5	0.18	1	
Bromomethane	ND	0.50	0.093	1		2-Hexanone	42	1.5	0.52	1	
2-Butanone	170	7.5	0.50	5		Methyl-t-Butyl Ether (MTBE)	ND	2.0	0.12	1	
Carbon Disulfide	ND	10	5.0	1		Methylene Chloride	3.3	5.0	1.0	1	J
Carbon Tetrachloride	ND	0.50	0.098	1		4-Methyl-2-Pentanone	0.65	1.5	0.15	1	J
Chlorobenzene	ND	0.50	0.11	1		o-Xylene	1.0	0.50	0.12	1	
Chloroethane	14	0.50	0.15	1		p/m-Xylene	3.1	2.0	0.76	1	
Chloroform	1.2	0.50	0.090	1		Styrene	ND	1.5	0.18	1	
Chloromethane	2.8	0.50	0.098	1		Tetrachloroethene	ND	0.50	0.11	1	
Dibromochloromethane	ND	0.50	0.11	1		Toluene	3.6	5.0	2.0	1	J
Dichlorodifluoromethane	0.26	0.50	0.14	1	J	Trichloroethene	ND	0.50	0.11	1	
1,1-Dichloroethane	1.5	0.50	0.10	1		Trichlorofluoromethane	ND	1.0	0.077	1	
1,1-Dichloroethene	ND	0.50	0.11	1		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.5	0.10	1	
1,2-Dibromoethane	ND	0.50	0.11	1		1,1,1-Trichloroethane	ND	0.50	0.10	1	
Dichlorotetrafluoroethane	ND	2.0	0.11	1		1,1,2-Trichloroethane	0.63	0.50	0.12	1	
1,2-Dichlorobenzene	ND	0.50	0.11	1		1,3,5-Trimethylbenzene	0.30	0.50	0.17	1	J
1,2-Dichloroethane	1.0	0.50	0.095	1		1,1,2,2-Tetrachloroethane	ND	1.0	0.11	1	
1,2-Dichloropropane	ND	0.50	0.11	1		1,2,4-Trimethylbenzene	0.79	1.5	0.33	1	J
1,3-Dichlorobenzene	ND	0.50	0.13	1		1,2,4-Trichlorobenzene	ND	2.0	0.72	1	
1,4-Dichlorobenzene	ND	0.50	0.13	1		Vinyl Acetate	ND	2.0	0.45	1	
c-1,3-Dichloropropene	ND	0.50	0.14	1		Vinyl Chloride	0.21	0.50	0.10	1	J
c-1,2-Dichloroethene	ND	0.50	0.13	1							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qu</u>	al		Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qu</u>	<u>al</u>	
1,4-Bromofluorobenzene	103	57-129				1,2-Dichloroethane-d4	104	47-137			
Toluene-d8	98	78-156									

Page 10 of 16

													-
CH2M Hill			Date Received: 08/03/10)				
1000 Wilshire Blvd.		Work Order No. 10-08-0166						3					
21st Floor		Proparation: N/A) \					
						Flepala	uon.						•
Los Angeles, CA 9001	7-2417	Method:						EPA I	O-15№	Λ			
						Units:					pp	ob (v/v)
Project: SFPP - Norw	alk Site										Page	4 of 4	1
			Lab Sa	mple		Date/Time			Date	e D	ate/Time	00 D /	-
Client Sample Number			Num	ber		Collected	Matrix	Instrument	Prepar	red A	Analyzed	QC Bate	ch ID
Method Blank			099-12	-981-6	76	N/A	Air	GC/MS AA	N/A	0	08/03/10 14:09	100803	L01
Comment(s): -Results were	e evaluated to th	e MDL, co	oncentratio	ons >=	to the I	MDL but < RL,	if found, ar	e qualified wit	th a "J" flag] .			
Parameter_	<u>Result</u>	<u>RL</u>	<u>MDL</u>	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	<u>DF</u>	<u>Qua</u>
Acetone	ND	50	25	1		t-1,2-Dichlor	oethene		ND	0.50	0.19	1	
Benzene	ND	0.50	0.094	1		t-1,3-Dichlor	opropene		ND	1.0	0.10	1	
Benzyl Chloride	ND	1.5	0.39	1		Ethylbenzen	e		ND	0.50	0.11	1	
Bromodichloromethane	ND	0.50	0.10	1		4-Ethyltolue	ne		ND	0.50	0.18	1	
Bromoform	ND	0.50	0.15	1		Hexachloro-	1,3-Butadie	ne	ND	1.5	0.18	1	
Bromomethane	ND	0.50	0.093	1		2-Hexanone			ND	1.5	0.52	1	
2-Butanone	ND	1.5	0.099	1		Methyl-t-But	yl Ether (M⁻	ΓBE)	ND	2.0	0.12	1	
Carbon Disulfide	ND	10	5.0	1		Methylene C	Methylene Chloride		ND	5.0	1.0	1	
Carbon Tetrachloride	ND	0.50	0.098	1		4-Methyl-2-F	Pentanone		ND	1.5	0.15	1	
Chlorobenzene	ND	0.50	0.11	1		o-Xylene			ND	0.50	0.12	1	
Chloroethane	ND	0.50	0.15	1		p/m-Xylene			ND	2.0	0.76	1	
Chloroform	ND	0.50	0.090	1		Styrene			ND	1.5	0.18	1	
Chloromethane	ND	0.50	0.098	1		Tetrachloroe	ethene		ND	0.50	0.11	1	
Dibromochloromethane	ND	0.50	0.11	1		Toluene			ND	5.0	2.0	1	
Dichlorodifluoromethane	ND	0.50	0.14	1		Trichloroethe	ene		ND	0.50	0.11	1	
1,1-Dichloroethane	ND	0.50	0.10	1		Trichlorofluc	oromethane		ND	1.0	0.077	1	
1,1-Dichloroethene	ND	0.50	0.11	1		1,1,2-Trichlo	oro-1,2,2-Tr	ifluoroethane	ND	1.5	0.10	1	
1,2-Dibromoethane	ND	0.50	0.11	1		1,1,1-Trichlo	proethane		ND	0.50	0.10	1	
Dichlorotetrafluoroethane	ND	2.0	0.11	1		1,1,2-Trichlo	proethane		ND	0.50	0.12	1	
1,2-Dichlorobenzene	ND	0.50	0.11	1		1,3,5-Trimet	hylbenzene		ND	0.50	0.17	1	
1,2-Dichloroethane	ND	0.50	0.095	1		1,1,2,2-Tetra	achloroetha	ne	ND	1.0	0.11	1	
1,2-Dichloropropane	ND	0.50	0.11	1		1,2,4-Trimet	hylbenzene	1	ND	1.5	0.33	1	
1,3-Dichlorobenzene	ND	0.50	0.13	1		1,2,4-Trichlo	orobenzene		ND	2.0	0.72	1	
1,4-Dichlorobenzene	ND	0.50	0.13	1		Vinyl Acetate	e		ND	2.0	0.45	1	
c-1,3-Dichloropropene	ND	0.50	0.14	1		Vinyl Chloric	le		ND	0.50	0.10	1	
c-1,2-Dichloroethene	ND	0.50	0.13	1									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>I</u>		Surrogates:			<u>REC (%)</u>	<u>Contr</u> Limits	<u>ol Q</u>	ual	
1,4-Bromofluorobenzene	102	57-129				1,2-Dichloro	ethane-d4		103	47-13	7		
Toluene-d8	96	78-156											

Page 11 of 16

CH2M Hill	Date Received:	08/03/10
1000 Wilshire Blvd.	Work Order No:	10-08-0166
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	EPA TO-3M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
10-08-0081-1	Air	GC 13	N/A	08/03/10	100803D01
Parameter	Sample Conc	DUP Conc	RPD	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	130	140	9	0-20	

RPD - Relative Percent Difference, CL - Control Limit

n M

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-0166
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	ASTM D-1946

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz	e ed	LCS/LCSD Batc Number	h
099-03-002-1,103	Air	GC 36	N/A	08/03/1	0	100803L01	
Parameter	LCS %RE	EC LCSD %	<u>REC 9</u>	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
Carbon Dioxide	94	92		80-120	2	0-30	
Oxygen + Argon	88	88		80-120	0	0-30	
Nitrogen	88	88		80-120	0	0-30	

RPD - Relative Percent Difference, CL - Control Limit

hM

CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417 Date Received: Work Order No: Preparation: Method: N/A 10-08-0166 N/A EPA TO-15M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed		LCS/LCSD E Number	Batch
099-12-981-676	Air	GC/MS AA	N/A	08/03/	'10	100803L0)1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	92	94	60-156	44-172	3	0-40	
Carbon Tetrachloride	104	106	64-154	49-169	2	0-32	
1,2-Dibromoethane	97	99	54-144	39-159	1	0-36	
1,2-Dichlorobenzene	100	103	34-160	13-181	2	0-47	
1,2-Dichloroethane	100	101	69-153	55-167	1	0-30	
1,2-Dichloropropane	92	95	67-157	52-172	2	0-35	
1,4-Dichlorobenzene	99	101	36-156	16-176	2	0-47	
c-1,3-Dichloropropene	100	103	61-157	45-173	3	0-35	
Ethylbenzene	94	95	52-154	35-171	2	0-38	
o-Xylene	94	96	52-148	36-164	2	0-38	
p/m-Xylene	94	96	42-156	23-175	2	0-41	
Tetrachloroethene	97	98	56-152	40-168	1	0-40	
Toluene	93	95	56-146	41-161	1	0-43	
Trichloroethene	94	96	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	90	94	65-149	51-163	4	0-37	
Vinyl Chloride	111	106	45-177	23-199	4	0-36	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

hM

Work Order Number: 10-08-0166

Qualifier *	Definition See applicable analysis comment
-	Less than the indicated value
	Greater than the indicated value
1	Surrogate compound recovery was out of control due to a required sample dilution
I	therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.
7440 LINCOLN WAY GARDEN GROVE, CA 92841-1432

.

Calscience

CHAIN OF CUSTODY RECORD DATE: 8/3/2010

Townservices, Inc. TE.: (714) 895-5494 - FAX: (714) 894-7501 ANDRY GLENT. TOWN & COUNTRY ROAD TOWN & COUNTRY ROAD TOWN & COUNTRY ROAD TOWN & COUNTRY ROAD Ge, CA 92368 TOWN & COUNTRY ROAD Ge, CA 92368 TOWN & COUNTRY ROAD Ge, CA 92368 TH4-560-4802 TA4-560-4801 TH4-560-48	PAGE: 1 OF 1	CLENT PROJECT NAME / NUMBER: P.O. NO.: SFPP - Norwalk Site QUOTE NO.: PROJECT CONTACT: QUOTE NO.:	James Dye sampler(s; (signature) [LAB USE ONLY]		10 DAYS REQUESTED ANALYSIS		t t t t t t t t t t t t t t t t t t t	nogrA		mar. RX 1. TO-3 (TPH-g) TO-3 (TPH-g)	Air 1 X X X On the Monthly sample	35 Air 1 X X X X	35 ^t Air 1 X X X	35 Air 1 X X X	Air 1 X X X			Received by: (Signature) Received by: (Signature) $\mathcal{N}_{\mathcal{M}} = \mathcal{N}_{\mathcal{M}} = \mathcal{N}_{\mathcal{M}} = \mathcal{N}_{\mathcal{M}}$	Received by: (Signafure) Date: Time:	Received by: (Signature) Date: Time:
THE CHARTER CAN DETENDENT OF CANADIA CAN DETENDENT TEL: (714) 385-5434. FAX: (714) 2000 CLENT CONTRACTOR CONTR	.32 .) 894-7501	hough		E-MAIL james dye@ki	(5 DAYS	TIL/	E# 81195 1 limit - all me		SAMPLING	ATE TIME	2010	2010 1535	2010 1535	2010 <i> </i> 535						
Taboratories, Inc. ADORY CLENT: ATORY CLEN	GARUEN GRUVE, СА 92841-14. TEL: (714) 895-5494 . FAX: (714)	rtners, Attn: Steve Defint d	8	FAX: 714-560-4601] 48НК 🗌 72 НК 🏹		eomatrix, cc: KMEP Steve Defibaugh-ref. AF west possible detection			LOCATION DESCRIPTION	influent Vapor to SVE 8/3/	influent Vapor to SVE 8/3/2	CAT 8/3/2				1	/ /		
	renomena Booratories, inc.	atory client: 21 Morgan Energy Par 55 Town & Country Roa	ge. CA 92868	714-560-4802		AL REQUIREMENTS (ADDITIONAL CI AVVQCB REPORTING	L INSTRUCTIONS port to A. Padilla at G ect Bill KMEP/SFPP - flags required/Use lo			SAMPLE ID	VHEAD-08-03-	VINF-08-03	VCAT-08-03	VEFF-08-03				Jished by-(Signature)	jieffed by: (Signature)	ished by: (Signature)

ale perdeter un concernent electrometer curre tore. Ere

in increas

1.4

150

				Pag	e 16 of 16
Environmental	WOR	K ORDER #:	10-08	3- Ø	66
SAMPL	E REC	EIPT FO	RM (Cooler _	<u>/</u> of _/
CLIENT: KINDER WORGAN ENERGY PAR	NERS		DATE:	08/0	3/10
TEMPERATURE: Thermometer ID: SC1 (Cr	iteria: 0.0 °C -	6.0 °C, not frozei	n)		
Temperature $\gamma \cdot \theta \circ C + 0.5 \circ C$ (CF) =	<u>. 5</u> °C	☐ Blank	⊠ Samı	ole
□ Sample(s) outside temperature criteria (PM/	APM contacte	d by:).			
□ Sample(s) outside temperature criteria but r	eceived on ice	/chilled on same d	ay of sampl	ing.	
□ Received at ambient temperature, place	d on ice for	transport by Co	ourier.		
Ambient Temperature: Air Filter	□ Metals O	nly 🗆 PCBs 🤇	Only	Initia	al: <u>ps</u>
			. .		
CUSTODY SEALS INTACT:					מ
	ot Intact)	Not Present	□ N/A	Initi	al: <u>/~1</u>
	lot Intact)			Initi	al:
SAMPLE CONDITION:			Yes	No	N/A
Chain-Of-Custody (COC) document(s) receiv	ed with samp	les	. 🖻		
COC document(s) received complete					
□ Collection date/time, matrix, and/or # of container	s logged in bas	ed on sample labels.			
☐ No analysis requested. ☐ Not relinquished.	□ No date/tin	ne relinquished.			
Sampler's name indicated on COC			Ð		
Sample container label(s) consistent with CO	C	••••••			
Sample container(s) intact and good condition	۱				
Proper containers and sufficient volume for a	nalyses reque	ested			
Analyses received within holding time	•••••				
pH / Residual Chlorine / Dissolved Sulfide rec	eived within	24 hours			
Proper preservation noted on COC or sample	container				Þ
Unpreserved vials received for Volatiles anal	ysis				
Volatile analysis container(s) free of headspa	ce				Ĺ
Tedlar bag(s) free of condensation	· · · · · · · · · · · · · · · · · · ·	-			
Solid: 40zCGJ 80zCGJ 160zCGJ	□Sleeve () □EnCore	s [®] □Terra	Cores® 🛛	
Water: DVOA DVOAh DVOAna ₂ D125A0	B □125AG	Bh □125AGBp	□1AGB [⊒1AGB na ₂	□1AGB s
□500AGB □500AGJ □500AGJs □250A	GB □250C	GB □250CGBs	□1PB	⊒500PB □	500PB na
□250PB □250PBn □125PB □125PBznna	a □100PJ []100PJ na₂ □	□		
Air: Dredlar [®] DSumma [®] Other: D Container: C: Clear A: Amber P: Plastic G: Glass J: Jar E Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p	Trip Blar Bottle Z : Ziplor B: H ₃ PO ₄ s : H ₂ SO	h k Lot#: :/Resealable Bag E : znna: ZnAc ₂ +NaOH f	Labeled/ Envelope f : Field-filtered	Checked by Reviewed by Scanned by	

and the second second

SOP	T100_	090	(05/10/	10}

August 17, 2010

Dan Jablonski CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Subject:Calscience Work Order No.:10-08-0761Client Reference:SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/10/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	08/10/10
1000 Wilshire Blvd.	Work Order No:	10-08-0761
21st Floor	Preparation:	EPA 3510C
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sampl Number	е	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-08-10		10-08-07	61-1-G	08/10/10 12:15	Aqueous	GC 27	08/13/10	08/13/10 19:03	100813B16
Comment(s): -Results were evaluate									
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Fuel Product Surrogates:	3400 <u>REC (%)</u>	500 <u>Control Limits</u>	430 <u>MDL</u>	1		Qual	ug/L		
Decachlorobiphenyl	103	68-140							
Method Blank		099-12-3	84-30	N/A	Aqueous	GC 27	08/13/10	08/13/10 18:10	100813B16
Comment(s): -Results were evaluate	ted to the MDL,	concentrations >	= to the I	MDL but < RI	_, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u> </u>	DF	<u>Qual</u>	<u>Units</u>		
TPH as Fuel Product Surrogates:	ND <u>REC (%)</u>	500 <u>Control Limits</u>	430 <u>MDL</u>	1		Qual	ug/L		
Decachlorobiphenyl	116	68-140							

~ M

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 2 of 13

Page 1 of 1

alscience nvironmental aboratories, Inc.

CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Date Received: Work Order No: Preparation: Method:

NACCOR

Page 3 of 13

08/10/10 10-08-0761 EPA 5030B EPA 8015B (M)

Page 1 of 1

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sampl Number	е	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-08-10		10-08-070	61-1-E	08/10/10 12:15	Aqueous	GC 42	08/10/10	08/10/10 22:58	100810B01
Comment(s): -Results were evalua	ted to the MDL,	concentrations >	= to the N	IDL but < RL	, if found, are	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>I</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	5800	500	240	5			ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits	MDL			Qual	U		
1,4-Bromofluorobenzene	104	38-134							
Method Blank		099-12-24	47-4,403	N/A	Aqueous	GC 42	08/10/10	08/10/10 09:14	100810B01
Comment(s): -Results were evalua	ted to the MDL,	concentrations >	= to the N	IDL but < RL	, if found, are	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline	ND	100	48	1			ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits	<u>MDL</u>			Qual			
1,4-Bromofluorobenzene	94	38-134							

7440 Lincoln Way, Garden Grove, CA 92841-1427 $\,\cdot\,\,$ TEL:(714) 895-5494 $\,\cdot\,\,$ FAX: (714) 894-7501

Page 4 of 13

CH2M Hill					Date R	eceived:				30	3/10/1	0	
1000 Wilshire Blvd.					Work C		10-08-0761						
21 at Floor					Dropor	otion:					5020		
21St F1001					Prepar	alion.				EPA	5030	В	
Los Angeles, CA 90017	'-2417				Method	1:				EPA 8260B			
					Units:					ug/L			
Project: SFPP - Norwa	lk Site									Page	e 1 of	2	
Client Comple Number			Lab S	ample	Date/Time	Matrix	Instrument	Date	e Da	ate/Time	QC Bat	tch ID	
			10.00			A	00/M0 II			8/11/10	400044		
INF-00-10			10-08	-0701-1-6	12:15	Aqueous	GC/WIS U	00/11/	10 0	16:30	100811	LUI	
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentra	tions >= to the	MDL but < RI	., if found, are	e qualified wi	th a "J" flag].				
Parameter_	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u> <u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	Qual	
Acetone	ND	1000	400	20	c-1,3-Dich	oropropene		ND	10	5.7	20		
Benzene	2600	10	5.7	20	t-1,3-Dichle	propropene		ND	10	7.2	20		
Bromobenzene	ND	20	6.7	20	Ethylbenze	ne		40	20	4.4	20		
Bromochloromethane	ND	20	14	20	2-Hexanon	е		ND	200	140	20		
Bromodichloromethane	ND	20	6.6	20	Isopropylbe	enzene		9.1	20	4.5	20	J	
Bromoform	ND	20	11	20	p-Isopropy	toluene		ND	20	5.2	20		
Bromomethane	ND	200	86	20	Methylene	Chloride		ND	200	52	20		
2-Butanone	ND	200	140	20	4-Methyl-2-	-Pentanone		ND	200	88	20		
n-Butylbenzene	ND	20	5.5	20	Naphthaler	ne		60	200	51	20	J	
sec-Butylbenzene	ND	20	4.1	20	n-Propylbe	nzene		26	20	16	20		
tert-Butylbenzene	ND	20	5.5	20	Styrene			ND	20	6.0	20		
Carbon Disulfide	ND	200	38	20	1,1,1,2-Tet	rachloroethar	ne	ND	20	7.0	20		
Carbon Tetrachloride	ND	10	8.5	20	1,1,2,2-Tet	rachloroethar	ne	ND	20	8.8	20		
Chlorobenzene	ND	20	4.4	20	Tetrachloro	bethene		ND	20	10	20		
Chloroethane	ND	100	26	20	Toluene			190	20	6.5	20		
Chloroform	ND	20	6.6	20	1,2,3-Trich	lorobenzene		ND	20	6.1	20		
Chloromethane	ND	200	9.7	20	1,2,4-Trich	lorobenzene		ND	20	9.7	20		
2-Chlorotoluene	ND	20	11	20	1,1,1-Trich	loroethane		ND	20	9.0	20		
4-Chlorotoluene	ND	20	4.2	20	1,1,2-Trich	loro-1,2,2-Tri	fluoroethane	ND	200	13	20		
Dibromochloromethane	ND	20	9.7	20	1,1,2-Trich	loroethane		ND	20	11	20		
1,2-Dibromo-3-Chloropropane	ND	100	62	20	Trichloroet	hene		ND	20	6.1	20		
1,2-Dibromoethane	ND	20	9.3	20	Trichloroflu	oromethane		ND	200	6.2	20		
Dibromomethane	ND	20	12	20	1,2,3-Trich	loropropane		ND	100	27	20		
1,2-Dichlorobenzene	ND	20	5.4	20	1,2,4-Trime	ethylbenzene		34	20	4.9	20		
1,3-Dichlorobenzene	ND	20	5.7	20	1,3,5-Trime	ethylbenzene		13	20	4.6	20	J	
1,4-Dichlorobenzene	ND	20	4.2	20	Vinyl Aceta	ite		ND	200	140	20		
Dichlorodifluoromethane	ND	20	9.8	20	Vinvl Chlor	ide		ND	10	6.5	20		
1.1-Dichloroethane	ND	20	7.5	20	p/m-Xvlene)		120	20	9.1	20		
1.2-Dichloroethane	ND	10	6.3	20	o-Xvlene			49	20	4.7	20		
1.1-Dichloroethene	ND	20	8.0	20	Methvl-t-Bu	utvl Ether (MT	BE)	140	20	6.1	20		
c-1.2-Dichloroethene	ND	20	9.7	20	Tert-Butvl	Alcohol (TBA)	5600	200	71	20		
t-1 2-Dichloroethene	ND	20	8.1	20	Diisopropy	Ether (DIPE	,)	15	40	6.2	20	Л	
1.2-Dichloropropane	ND	20	7.6	20	Ethyl-t-But	VI Ether (FTB	/ F)	ND	40	5.3	20	•	
1.3-Dichloropropane	ND	20	7.6	20	Tert-Amvl-	Methyl Fther	(TAME)	ND	40	5.7	20		
2.2-Dichloropropane	ND	20	9.2	20	Ethanol		(···)	ND	2000	1000	20		
1.1-Dichloropropene	ND	20	5.1	20									
,					0				A				
Surrogates:	<u>REC (%)</u>	Control Limits	<u>Qu</u>	<u>ai</u>	Surrogates	<u>.</u>		<u>KEC (%)</u>	<u>Contro</u> Limits	<u>) Q</u>	lual		
Dibromofluoromethane	101	80-126			1,2-Dichlor	oethane-d4		105	80-131	1			
Toluene-d8	98	80-120			1,4-Bromo	luorobenzene	9	94	80-120)			

DF - Dilution Factor , RL - Reporting Limit ,

Qual - Qualifiers

n M

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 5 of 13

CH2M Hill						Date R	eceived:				30	3/10/1	0	
1000 Wilshire Blvd.						Work C		10-08-0761						
21st Floor						Dronar	ation.					50201		
	7 0 4 4 7					Mathan						0000		
Los Angeles, CA 9001	(-2417					Method	1:				EPA 8260B			
						Units:						ug/	L	
Project: SFPP - Norwa	lk Site										Page	e 2 of 2	2	
Client Sample Number			Lab Sa Numb	mple ber		Date/Time Collected	Matrix	Instrument	Date Prepa	e D red /	Date/Time Analyzed	QC Bat	ch ID	
Method Blank			099-14·	001-1	,687	N/A	Aqueous	GC/MS U	08/11/	10	08/11/10 13:58	100811	L01	
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >=	to the I	MDL but < RL	., if found, are	e qualified wi	th a "J" flag	g.				
Parameter	Result	<u>RL</u>	MDL	DF	<u>Qual</u>	Parameter			Result		MDL	<u>DF</u>	Qua	
Acetone	ND	50	20	1		c-1,3-Dichl	oropropene		ND	0.50	0.28	1		
Benzene	ND	0.50	0.28	1		t-1,3-Dichlo	propropene		ND	0.50	0.36	1		
Bromobenzene	ND	1.0	0.33	1		Ethylbenze	ne		ND	1.0	0.22	1		
Bromochloromethane	ND	1.0	0.69	1		2-Hexanon	е		ND	10	6.9	1		
Bromodichloromethane	ND	1.0	0.33	1		Isopropylbe	enzene		ND	1.0	0.23	1		
Bromoform	ND	1.0	0.55	1		p-Isopropyl	toluene		ND	1.0	0.26	1		
Bromomethane	ND	10	4.3	1		Methylene	Chloride		ND	10	2.6	1		
2-Butanone	ND	10	6.9	1		4-Methyl-2-	-Pentanone		ND	10	4.4	1		
n-Butylbenzene	ND	1.0	0.28	1		Naphthaler	ne		ND	10	2.5	1		
sec-Butylbenzene	ND	1.0	0.20	1		n-Propylbe	nzene		ND	1.0	0.79	1		
tert-Butylbenzene	ND	1.0	0.28	1		Styrene			ND	1.0	0.30	1		
Carbon Disulfide	ND	10	1.9	1		1,1,1,2-Tet	rachloroethar	ne	ND	1.0	0.35	1		
Carbon Tetrachloride	ND	0.50	0.43	1		1,1,2,2-Tet	rachloroethar	ne	ND	1.0	0.44	1		
Chlorobenzene	ND	1.0	0.22	1		Tetrachloro	bethene		ND	1.0	0.51	1		
Chloroethane	ND	5.0	1.3	1		Toluene			ND	1.0	0.33	1		
Chloroform	ND	1.0	0.33	1		1,2,3-Trich	lorobenzene		ND	1.0	0.31	1		
Chloromethane	ND	10	0.49	1		1,2,4-Trich	lorobenzene		ND	1.0	0.49	1		
2-Chlorotoluene	ND	1.0	0.55	1		1,1,1-Trich	loroethane		ND	1.0	0.45	1		
4-Chlorotoluene	ND	1.0	0.21	1		1,1,2-Trich	loro-1,2,2-Tri	fluoroethane	ND	10	0.64	1		
Dibromochloromethane	ND	1.0	0.48	1		1,1,2-Trich	loroethane		ND	1.0	0.54	1		
1,2-Dibromo-3-Chloropropane	ND	5.0	3.1	1		Trichloroet	hene		ND	1.0	0.30	1		
1,2-Dibromoethane	ND	1.0	0.47	1		Trichloroflu	oromethane		ND	10	0.31	1		
Dibromomethane	ND	1.0	0.59	1		1,2,3-Trich	loropropane		ND	5.0	1.3	1		
1,2-Dichlorobenzene	ND	1.0	0.27	1		1,2,4-Trime	ethylbenzene		ND	1.0	0.24	1		
1,3-Dichlorobenzene	ND	1.0	0.28	1		1,3,5-1 rime	ethylbenzene		ND	1.0	0.23	1		
1,4-Dichlorobenzene	ND	1.0	0.21	1		Vinyl Aceta	ite		ND	10	7.1	1		
Dichlorodifluoromethane	ND	1.0	0.49	1		Vinyl Chlor	ide		ND	0.50	0.33	1		
1,1-Dichloroethane	ND	1.0	0.37	1		p/m-Xylene	;		ND	1.0	0.45	1		
1,2-Dichloroethane	ND	0.50	0.31	1		o-Xylene			ND	1.0	0.24	1		
1,1-Dichloroethene	ND	1.0	0.40	1		Methyl-t-Bu	ityl Ether (MI	BE)	ND	1.0	0.30	1		
c-1,2-Dichloroethene	ND	1.0	0.49	1		Tert-Butyl /	Alcohol (IBA)	ND	10	3.5	1		
		1.0	0.40	1			Etner (DIPE) _\		2.0	0.31	1		
1,2-Dichloropropane		1.0	0.30	1			yı ⊏uner (EIB Mothul ⊑than			2.0	0.27	1		
		1.0	0.30	1		Tert-Amyl-I	vietnyi Ether			∠.U 100	U.28	1		
2,2-Dichloropropane		1.0	0.40	1		Emanor			ND	100	50	I		
r, r-Dichioropropene	ND	1.0	0.20	I										
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>		Surrogates	-		<u>REC (%)</u>	<u>Contr</u> Limits	<u>ol Q</u> <u>s</u>	lual		
Dibromofluoromethane	105	80-126				1,2-Dichlor	oethane-d4		104	80-13	31			
Toluene-d8	99	80-120				1,4-Bromof	luorobenzene	e	93	80-12	20			

RL - Reporting Limit , DF - Dilution Factor ,

n.M.

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	08/10/10
1000 Wilshire Blvd.	Work Order No:	10-08-0761
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-08-0691-1	Aqueous	GC 42	08/10/10		08/10/10	100810S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	90	91	68-122	1	0-18	

RPD - Relative Percent Difference, CL - Control Limit

B95-5494 · FAX: (714) 894-7501

CH2M Hill 1000 Wilshiro Blvd	Date Received: Work Order No:	08/10/10 10-08-0761
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8260B

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-08-0528-22	Aqueous	GC/MS U	08/11/10	08/11/10		100811S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	108	111	80-120	3	0-20	
Carbon Tetrachloride	119	122	55-151	2	0-20	
Chlorobenzene	103	105	80-120	2	0-20	
1,2-Dibromoethane	110	110	77-125	0	0-20	
1,2-Dichlorobenzene	102	103	78-120	1	0-20	
1,2-Dichloroethane	107	111	80-120	3	0-20	
1,1-Dichloroethene	108	108	69-129	1	0-20	
Ethylbenzene	108	110	73-127	2	0-20	
Toluene	104	107	80-120	3	0-20	
Trichloroethene	108	111	67-133	3	0-20	
Vinyl Chloride	97	106	67-133	9	0-20	
Methyl-t-Butyl Ether (MTBE)	101	103	65-131	2	0-22	
Tert-Butyl Alcohol (TBA)	106	115	62-134	9	0-20	
Diisopropyl Ether (DIPE)	100	100	64-136	0	0-29	
Ethyl-t-Butyl Ether (ETBE)	101	105	70-124	4	0-20	
Tert-Amyl-Methyl Ether (TAME)	106	111	71-125	4	0-20	
Ethanol	90	105	44-152	16	0-43	

RPD - Relative Percent Difference, CL - Control Limit

ha 7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 ·

5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-0761
21st Floor	Preparation:	EPA 3510C
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da d Analy	te /zed	LCS/LCSD Batc Number	h
099-12-384-30	Aqueous	GC 27	08/13/10) 08/13	/10	100813B16	
Parameter	LCS %	REC LCS	D %REC	%REC CL	<u>RPD</u>	RPD CL	Qualifiers
TPH as Fuel Product	114	1	14	75-117	0	0-13	

RPD - Relative Percent Difference, CL - Control Limit

hu

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-0761
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyzed	LCS/LCSD Numbe	Batch er
099-12-247-4,403	Aqueous	GC 42	08/10/10	08/10/10	100810E	301
Parameter	<u>LCS %</u>	REC LCSD	<u>%REC %</u>	REC CL	<u>RPD</u> <u>RPD</u> C	L Qualifiers
TPH as Gasoline	97	96		78-120	0 0-10	

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

vate Received: N/A
Vork Order No: 10-08-0761
reparation: EPA 5030B
lethod: EPA 8260B
v v 1

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ite yzed	LCS/LCSD I Numbe	Batch
099-14-001-1,687	Aqueous	GC/MS U	08/11/10	08/11/	/10	100811L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	108	111	80-120	73-127	2	0-20	
Carbon Tetrachloride	125	122	67-139	55-151	2	0-22	
Chlorobenzene	107	105	80-120	73-127	1	0-20	
1,2-Dibromoethane	104	106	80-120	73-127	2	0-20	
1,2-Dichlorobenzene	99	101	79-120	72-127	2	0-20	
1,2-Dichloroethane	105	106	80-120	73-127	2	0-20	
1,1-Dichloroethene	112	112	71-125	62-134	1	0-25	
Ethylbenzene	110	108	80-123	73-130	2	0-20	
Toluene	106	106	80-120	73-127	0	0-20	
Trichloroethene	111	113	80-120	73-127	1	0-20	
Vinyl Chloride	97	105	68-140	56-152	8	0-23	
Methyl-t-Butyl Ether (MTBE)	102	102	75-123	67-131	1	0-25	
Tert-Butyl Alcohol (TBA)	107	108	72-126	63-135	1	0-20	
Diisopropyl Ether (DIPE)	103	100	75-129	66-138	3	0-22	
Ethyl-t-Butyl Ether (ETBE)	102	101	76-124	68-132	1	0-20	
Tert-Amyl-Methyl Ether (TAME)	104	109	79-121	72-128	5	0-20	
Ethanol	106	94	53-143	38-158	13	0-25	

Total number of LCS compounds: 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

nM

RPD - Relative Percent Difference, CL - Control Limit

> 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

hM

Work Order Number: 10-08-0761

Qualifier *	Definition
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

-11-1

ad by: (Signature) ad by: (Signature) $MMMC_{R}$ CM $Date: //O/O Time: /2:44$ ad by:(Signature) $MMMC_{R}$ CM $Date: /Time: /2:44$ ad by:(Signature) $Datei$ $Datei$ $Time: Time:$	
by (Signature) Bate (Time: Date (Time: Dy (Signature))) Date (Time: Dy (Signature)))))))))))))))))))	by (Signature) \mathcal{M} Received by (Signature) \mathcal{M} \mathcal{M} \mathcal{M} \mathcal{C} \mathcal{C} \mathcal{C} $\frac{Dete:}{S}/\mathfrak{lo}/\mathfrak{l}$
	by (Signature) Beceived by: (Signature) Date Date Date Date Date Date Date Date
	d by: (Signature) Received by: (Signature)

 T^{**} is the state of the second second

				Fayer	50115
Galecience pvironmental	WO	RK ORDER #:	10-08	3-071	67
Laboratories, Inc.	SAMPLE REC	CEIPT FOI	RM (Cooler 1	of <u>/</u>
CLIENT: <u>KMEP</u>			DATE:	08/10	/ 10
TEMPERATURE: Thermome Temperature <u>1</u> .4 Sample(s) outside temperat Sample(s) outside temperat Received at ambient temp Ambient Temperature: Ai	ter ID: SC1 (Criteria: 0.0°C °C + 0.5°C (CF) = :ure criteria (PM/APM contac ture criteria but received on in perature, placed on ice fc r □ Filter □ Metals	- 6.0 °C, not frozen °C ted by:). ce/chilled on same data or transport by Co Only □ PCBs (I) I Blank ay of sampli Furier. Only	Sample	ÞL
CUSTODY SEALS INTACT □ Cooler □ Sample	: □ No (Not Intact) □ No (Not Intact)	☑ Not Present ☑ Not Present	□ N/A	Initial: Initial:	pL pL
SAMPLE CONDITION: Chain-Of-Custody (COC) docu COC document(s) received co	Iment(s) received with san mplete Id/or # of containers logged in b	nples	Yes . ☑ . ☑	No □ □	N/A
Sampler's name indicated on (Sample container label(s) con:	Sistent with COC	time relinquisneu.	d d l		
Proper containers and sufficien	nt volume for analyses rec	luested	, A		
Analyses received within holdu pH / Residual Chlorine / Disso	ng time Ived Sulfide received withi	n 24 hours			D Ø
Proper preservation noted on C	COC or sample container.		P /		
Volatile analysis container(s) fr Tedlar bag(s) free of condensa CONTAINER TYPE:	ree of headspace	·····	. □		۵ ۲
Solid: □4ozCGJ □8ozCGJ Water: □VOA ☑VOAh □VC	□16ozCGJ □Sleeve (_)Ana₂ □125AGB □125A) □EnCores .GBh □125AGBp	^{s®} ⊡Terra(□1AGB [Cores [®] □ ⊒1AGB na₂ □	1AGB s
□500AGB ☑500AGJ □500A □250PB □250PBn □125PE	AGJs □250AGB □2500 3 □125PBznna □100PJ	CGB □250CGBs □100PJna₂ □	□1PB [⊐500PB □500	0PB na
Air: □Tedlar [®] □Summa [®] (Container: C: Clear A: Amber P: Plasti Preservative: h: HCL n: HNO₃ na₂:Ne	Other: □ Trip Bl; c G: Glass J: Jar B: Bottle Z: Zir h₂S₂O₃ na: NaOH p: H₃PO₄ s: H₂S	ank Lot#: /loc/Resealable Bag E: F :O4 znna: ZnAc2+NaOH f	Labeled/(Envelope F : Field-filtered	Checked by: ≀eviewed by: _{ Scanned by: _	D.L 1, J.SC D.L

SOP T10	0_090	(05/10/10)	
---------	-------	------------	--

September 01, 2010

Dan Jablonski CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Subject: Calscience Work Order No.: 10-08-2369 Client Reference: SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 8/31/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Case Narrative

Work Order # 10-08-2369 Modified EPA TO-14A or EPA TO-15

EPA Methods TO-14A and TO-15 describe gas chromatographic procedures that will allow for that separation of volatile organic compounds and their qualitative and quantitative analysis by mass spectrometry (GC/MS). A known volume of sample is directed from the container (Summa® canister or Tedlar[™] bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of EPA TO-14A/TO-15 versus Calscience EPA TO-14A/TO-15 (Modified)

Requirement	EPA Method	Calscience Modifications
BFB Acceptance Criteria	CLP Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, two analytes allowed <= 40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Not Mentioned	Analytes contained in the LCS standard evaluated against historical control limits for the LCS
Daily Calibration Verification (CCV)	Allowable % Difference for each Target Analyte is <= 30%	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%
		Target List Analysis: Allowable % Difference for each target analytes is <= 30%
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 40% (Range: 60% to 140%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 40% of the mean area response of most recent Initial Calibration (Range: 60% to 140%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	Not Mentioned	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

alscience nvironmental aboratories, Inc.

CH2M Hill Date Received:

N ACCORD

CH2M Hill		Date Received: 08/31/10							
1000 Wilshire Blvd.				Work C	Order No	D:		10)-08-2369
21st Floor				Prepar	ation:				N/A
Los Angeles, CA 9001	7-2417			Methoo	l:			ASTI	M D-1946
Project: SFPP - Norw	alk Site							F	Page 1 of 1
Client Sample Number		Lab Sa Numb	mple per	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-08-31		10-08·	-2369-1-B	08/31/10 12:15	Air	GC 36	N/A	08/31/10 14:55	100831L01
Comment(s): -Results were e	evaluated to the MDL	., concentration	concentrations >= to the MDL but < RL, if found, are qualified with				n a "J" flag.		
Parameter	Result	<u>RL</u>	MDL	<u>[</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Carbon Dioxide	ND	0.500	0.344	1			%v		
Oxygen + Argon	21.4	0.500	0.370	1			%v		
Pre Cat-08-31		10-08-	-2369-2-B	08/31/10 12:15	Air	GC 36	N/A	08/31/10 15:12	100831L01
Comment(s): -Results were e	evaluated to the MDL	., concentration	s >= to the N	1DL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>[</u>	<u>DF</u>	Qual	<u>Units</u>		
Carbon Dioxide	1.24	0.500	0.344	1			%v		
Oxygen + Argon	19.8	0.500	0.370	1			%v		
EFF-08-31		10-08·	-2369-3-В	08/31/10 12:15	Air	GC 36	N/A	08/31/10 15:29	100831L01
Comment(s): -Results were e	evaluated to the MDL	., concentration	s >= to the N	1DL but < RL	., if found, a	are qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Carbon Dioxide	1.13	0.500	0.344	1			%v		
Oxygen + Argon	20.0	0.500	0.370	1			%v		
Method Blank		099-03	3-002-1,131	N/A	Air	GC 36	N/A	08/31/10 09:13	100831L01
Comment(s): -Results were e	valuated to the MDL	, concentration	s >= to the N	1DL but < RL	, if found, a	are qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>[</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	ND	0.500	0.0981	1			%v		
Carbon Dioxide	ND	0.500	0.344	1			%v		
Carbon Monoxide	ND	0.500	0.272	1			%v		
Oxygen + Argon	ND	0.500	0.370	1			%v		
Nitrogen	ND	0.500	0.174	1			%v		

~ M

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 3 of 17

alscience ≡ ∎_nvironmental aboratories, Inc.

CH2M Hill	Date Received:
1000 Wilshire Blvd.	Work Order No:
21st Floor	Preparation:
Los Angeles CA 90017-2417	Method:

Page 4 of 17
TED IN ACCORDAN
S neac
08/31/10

1000 Wilshire Blvd. 21st Floor Los Angeles, CA 9001	7-2417		Work Order No: Preparation: Method:									
Project: SFPP - Norwa	alk Site							F	Page 1 of 1			
Client Sample Number		Lab San Numb	nple er	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID			
INF-08-31		10-08-2	2369-1-A	08/31/10 Air 12:15		GC 53	GC 53 N/A		100831L01			
Comment(s): -Results were ev	aluated to the MDI	_, concentrations	s >= to the N	MDL but < RL	, if found, a	are qualified wit	h a "J" flag.					
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>[</u>	<u>DF</u>	Qual	Units					
TPH as Gasoline	11	1.5	0.17	1		ppm (v/v)						
Pre Cat-08-31		10-08-2	2369-2-A	08/31/10 12:15	Air	GC 53	N/A	08/31/10 15:32	100831L01			
Comment(s): -Results were ev	aluated to the MDI	_, concentrations	s >= to the N	MDL but < RL	, if found, a	are qualified wit	h a "J" flag.					
Parameter	<u>Result</u>	RL	<u>MDL</u>	<u>[</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
TPH as Gasoline	6.5	1.5	0.17	1			ppm (v/v)					
EFF-08-31		10-08-2	2369-3-A	08/31/10 12:15	Air	GC 53	N/A	08/31/10 14:55	100831L01			
Comment(s): -Results were ev	aluated to the MDI	_, concentrations	s >= to the M	MDL but < RL	, if found, a	are qualified wit	h a "J" flag.					
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>[</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
TPH as Gasoline	2.8	1.5	0.17	1			ppm (v/v)					
Method Blank		098-01	-005-2,568	N/A	Air	GC 53	N/A	08/31/10 09:09	100831L01			
Comment(s): -Results were ev	aluated to the MDI	_, concentrations	s >= to the M	MDL but < RL	, if found, a	are qualified wit	h a "J" flag.					
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>[</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>					
TPH as Gasoline	ND	1.5	0.17	1			ppm (v/v)					

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501 alscience nvironmental aboratories, Inc.

Date Received:

Work Order No:

Preparation:

Method:

CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Project: SFPP - Norv	walk Site							F	Page 1 of 1
Client Sample Number		Lab Sa Numl	mple ber	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-08-31		10-08	10-08-2369-1-A		Air	GC 14	N/A	08/31/10 15:17	100831L01
Comment(s): -Results were	evaluated to the MDL	, concentration	s >= to the	MDL but < RL	., if found, a	re qualified wit	n a "J" flag.		
Parameter	Result	<u>RL</u>	<u>RL</u> <u>MDL</u>		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	39	1.0	0.21	1			ppm (v/v)		
Pre Cat-08-31		10-08	10-08-2369-2-A		08/31/10 Air 12:15		N/A	08/31/10 15:37	100831L01
Comment(s): -Results were	evaluated to the MDL	, concentration	s >= to the	MDL but < RL	., if found, a	re qualified wit	n a "J" flag.		
Parameter	Result	<u>RL</u>	<u>RL MDL</u>		DF	<u>Qual</u>	<u>Units</u>		
Methane	160	1.0	0.21	1			ppm (v/v)		
EFF-08-31		10-08	-2369-3-A	08/31/10 12:15	Air	GC 14	N/A	08/31/10 14:58	100831L01
Comment(s): -Results were	evaluated to the MDL	, concentration	s >= to the	MDL but < RL	., if found, a	re qualified wit	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u>I</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	190	1.0	0.21	1			ppm (v/v)		
Method Blank		099-0	7-024-717	N/A	Air	GC 14	N/A	08/31/10 10:29	100831L01
Comment(s): -Results were	evaluated to the MDL	, concentration	s >= to the	MDL but < RL	., if found, a	re qualified wit	n a "J" flag.		
Parameter	Result	<u>RL</u>	MDL	<u>I</u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
Methane	ND	1.0	0.21	1			ppm (v/v)		
Carbon Dioxide	ND	1.0	0.34	1			ppm (v/v)		
Carbon Monoxide	ND	5.0	0.33	1			ppm (v/v)		

N Pa Me Ca Са TGNMO ND 5.0 0.54 1 ppm (v/v)

DF - Dilution Factor RL - Reporting Limit , Qual - Qualifiers ,

n M

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

08/31/10 10-08-2369

SCAQMD 25.1M

N/A

Page 6 of 17

INF-08-31	08/31/10 12:15	08/31/10 Air GC/MS V 12:15			08/31/10 100831L01 16:33			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID	
Project: SFPP - Norwalk Site						Page	e 1 of 4	
Los Angeles, CA 90017-2417	Method Units:	:		EPA TO-15M ppb (v/v)				
21st Floor		Prepara	ation:		N/A			
1000 Wilshire Blvd.	Work O	rder No	:		10-08-2369			
CH2M Hill		Date Re	eceived:	:		08	8/31/10	

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-The method has been modified to use Tedlar bags instead of Summa Canisters.

Parameter	Result	<u>RL</u>	MDL	<u>DF</u>	Qual	Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qual
Acetone	ND	120	62	2.5		t-1,2-Dichloroethene	ND	1.2	0.47	2.5	
Benzene	72	1.2	0.24	2.5		t-1,3-Dichloropropene	ND	2.5	0.26	2.5	
Benzyl Chloride	ND	3.8	0.99	2.5		Ethylbenzene	12	1.2	0.28	2.5	
Bromodichloromethane	ND	1.2	0.25	2.5		4-Ethyltoluene	6.5	1.2	0.46	2.5	
Bromoform	ND	1.2	0.38	2.5		Hexachloro-1,3-Butadiene	ND	3.8	0.45	2.5	
Bromomethane	ND	1.2	0.23	2.5		2-Hexanone	ND	3.8	1.3	2.5	
2-Butanone	6.4	3.8	0.25	2.5		Methyl-t-Butyl Ether (MTBE)	7.7	5.0	0.30	2.5	
Carbon Disulfide	ND	25	12	2.5		Methylene Chloride	ND	12	2.5	2.5	
Carbon Tetrachloride	ND	1.2	0.25	2.5		4-Methyl-2-Pentanone	ND	3.8	0.38	2.5	
Chlorobenzene	ND	1.2	0.27	2.5		o-Xylene	25	1.2	0.30	2.5	
Chloroethane	ND	1.2	0.39	2.5		p/m-Xylene	62	5.0	1.9	2.5	
Chloroform	0.89	1.2	0.22	2.5	J	Styrene	ND	3.8	0.45	2.5	
Chloromethane	ND	1.2	0.24	2.5		Tetrachloroethene	ND	1.2	0.28	2.5	
Dibromochloromethane	ND	1.2	0.28	2.5		Toluene	66	12	5.0	2.5	
Dichlorodifluoromethane	ND	1.2	0.36	2.5		Trichloroethene	ND	1.2	0.27	2.5	
1,1-Dichloroethane	ND	1.2	0.26	2.5		Trichlorofluoromethane	ND	2.5	0.19	2.5	
1,1-Dichloroethene	ND	1.2	0.27	2.5		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	3.8	0.25	2.5	
1,2-Dibromoethane	ND	1.2	0.28	2.5		1,1,1-Trichloroethane	ND	1.2	0.25	2.5	
Dichlorotetrafluoroethane	ND	5.0	0.27	2.5		1,1,2-Trichloroethane	ND	1.2	0.30	2.5	
1,2-Dichlorobenzene	ND	1.2	0.28	2.5		1,3,5-Trimethylbenzene	8.3	1.2	0.42	2.5	
1,2-Dichloroethane	ND	1.2	0.24	2.5		1,1,2,2-Tetrachloroethane	ND	2.5	0.26	2.5	
1,2-Dichloropropane	ND	1.2	0.29	2.5		1,2,4-Trimethylbenzene	18	3.8	0.82	2.5	
1,3-Dichlorobenzene	ND	1.2	0.33	2.5		1,2,4-Trichlorobenzene	ND	5.0	1.8	2.5	
1,4-Dichlorobenzene	ND	1.2	0.34	2.5		Vinyl Acetate	ND	5.0	1.1	2.5	
c-1,3-Dichloropropene	ND	1.2	0.35	2.5		Vinyl Chloride	ND	1.2	0.25	2.5	
c-1,2-Dichloroethene	ND	1.2	0.33	2.5							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>al</u>		Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	Qua	<u>al</u>	
1,4-Bromofluorobenzene	87	57-129				1,2-Dichloroethane-d4	75	47-137			
Toluene-d8	91	78-156									

	1ED	114	000	RDAN	
202	12		11	· · · ·	J.C.
CA					44
A N					

Page 7 of 17

Pre Cat-08-31	08/31/10	Air	GC/MS V	N/A	08/31/10 17:20	100831L01			
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID		
Project: SFPP - Norwalk Site						Page	e 2 of 4		
5	Units:			ppb (v/v)					
Los Angeles, CA 90017-2417	Method	:			EPA TO-15M				
21st Floor		Prepara	ation:			N/A			
1000 Wilshire Blvd.	Work O	rder No	:		10-08-2369				
CH2M Hill	Date Re	eceived:			08/31/10				

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-The method has been modified to use Tedlar bags instead of Summa Canisters.

Parameter	Result	RL	MDL	DF	Qual	Parameter	Result	RL	MDL	DF	Qual
Acetone	81	100	50	2	J	t-1.2-Dichloroethene	ND	1.0	0.37	2	
Benzene	53	1.0	0.19	2	-	t-1.3-Dichloropropene	ND	2.0	0.20	2	
Benzyl Chloride	ND	3.0	0.79	2		Ethylbenzene	6.3	1.0	0.23	2	
Bromodichloromethane	ND	1.0	0.20	2		4-Ethvltoluene	2.4	1.0	0.36	2	
Bromoform	ND	1.0	0.30	2		Hexachloro-1,3-Butadiene	ND	3.0	0.36	2	
Bromomethane	ND	1.0	0.19	2		2-Hexanone	ND	3.0	1.0	2	
2-Butanone	18	3.0	0.20	2		Methyl-t-Butyl Ether (MTBE)	1.6	4.0	0.24	2	J
Carbon Disulfide	ND	20	10	2		Methylene Chloride	ND	10	2.0	2	
Carbon Tetrachloride	ND	1.0	0.20	2		4-Methyl-2-Pentanone	ND	3.0	0.30	2	
Chlorobenzene	ND	1.0	0.22	2		o-Xylene	12	1.0	0.24	2	
Chloroethane	ND	1.0	0.31	2		p/m-Xylene	28	4.0	1.5	2	
Chloroform	0.48	1.0	0.18	2	J	Styrene	ND	3.0	0.36	2	
Chloromethane	ND	1.0	0.20	2		Tetrachloroethene	ND	1.0	0.22	2	
Dibromochloromethane	ND	1.0	0.22	2		Toluene	39	10	4.0	2	
Dichlorodifluoromethane	ND	1.0	0.29	2		Trichloroethene	ND	1.0	0.21	2	
1,1-Dichloroethane	ND	1.0	0.21	2		Trichlorofluoromethane	ND	2.0	0.15	2	
1,1-Dichloroethene	ND	1.0	0.22	2		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	3.0	0.20	2	
1,2-Dibromoethane	ND	1.0	0.22	2		1,1,1-Trichloroethane	ND	1.0	0.20	2	
Dichlorotetrafluoroethane	ND	4.0	0.22	2		1,1,2-Trichloroethane	ND	1.0	0.24	2	
1,2-Dichlorobenzene	ND	1.0	0.22	2		1,3,5-Trimethylbenzene	3.1	1.0	0.34	2	
1,2-Dichloroethane	ND	1.0	0.19	2		1,1,2,2-Tetrachloroethane	ND	2.0	0.21	2	
1,2-Dichloropropane	ND	1.0	0.23	2		1,2,4-Trimethylbenzene	6.0	3.0	0.65	2	
1,3-Dichlorobenzene	ND	1.0	0.26	2		1,2,4-Trichlorobenzene	ND	4.0	1.4	2	
1,4-Dichlorobenzene	ND	1.0	0.27	2		Vinyl Acetate	ND	4.0	0.91	2	
c-1,3-Dichloropropene	ND	1.0	0.28	2		Vinyl Chloride	ND	1.0	0.20	2	
c-1,2-Dichloroethene	ND	1.0	0.27	2							
Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>Qu</u>	al		Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>Qu</u>	<u>al</u>	
1,4-Bromofluorobenzene	85	57-129				1,2-Dichloroethane-d4	73	47-137			
Toluene-d8	90	78-156									

Page 8 of 17

EFF-08-31	08/31/10 12:15	Air	GC/MS V	N/A	08/31/10 15:45	100831L01	
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: SFPP - Norwalk Site						Page	e 3 of 4
0	Units:			р	pb (v/v)		
Los Angeles, CA 90017-2417		Method	:		EPA TO-15M		
21st Floor		Prepara	ation:	N/A			
1000 Wilshire Blvd.	Work O	rder No		10-08-2369			
CH2M Hill		Date Re	eceived:			08	8/31/10

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

The method has been modified to use Tedlar bags instead of Summa Canisters

Parameter	<u>Result</u>	<u>RL</u>	MDL	DF	Qual	Parameter_	<u>Result</u>	<u>RL</u>	MDL	DF	Qual
Acetone	42	50	25	1	J	t-1,2-Dichloroethene	ND	0.50	0.19	1	
Benzene	6.7	0.50	0.094	1		t-1,3-Dichloropropene	ND	1.0	0.10	1	
Benzyl Chloride	ND	1.5	0.39	1		Ethylbenzene	1.1	0.50	0.11	1	
Bromodichloromethane	ND	0.50	0.10	1		4-Ethyltoluene	0.49	0.50	0.18	1	J
Bromoform	ND	0.50	0.15	1		Hexachloro-1,3-Butadiene	ND	1.5	0.18	1	
Bromomethane	ND	0.50	0.093	1		2-Hexanone	1.1	1.5	0.52	1	J
2-Butanone	17	1.5	0.099	1		Methyl-t-Butyl Ether (MTBE)	ND	2.0	0.12	1	
Carbon Disulfide	ND	10	5.0	1		Methylene Chloride	ND	5.0	1.0	1	
Carbon Tetrachloride	ND	0.50	0.098	1		4-Methyl-2-Pentanone	ND	1.5	0.15	1	
Chlorobenzene	ND	0.50	0.11	1		o-Xylene	1.9	0.50	0.12	1	
Chloroethane	ND	0.50	0.15	1		p/m-Xylene	5.2	2.0	0.76	1	
Chloroform	ND	0.50	0.090	1		Styrene	ND	1.5	0.18	1	
Chloromethane	0.27	0.50	0.098	1	J	Tetrachloroethene	ND	0.50	0.11	1	
Dibromochloromethane	ND	0.50	0.11	1		Toluene	7.4	5.0	2.0	1	
Dichlorodifluoromethane	0.27	0.50	0.14	1	J	Trichloroethene	0.70	0.50	0.11	1	
1,1-Dichloroethane	ND	0.50	0.10	1		Trichlorofluoromethane	ND	1.0	0.077	1	
1,1-Dichloroethene	ND	0.50	0.11	1		1,1,2-Trichloro-1,2,2-Trifluoroethane	ND	1.5	0.10	1	
1,2-Dibromoethane	ND	0.50	0.11	1		1,1,1-Trichloroethane	ND	0.50	0.10	1	
Dichlorotetrafluoroethane	ND	2.0	0.11	1		1,1,2-Trichloroethane	ND	0.50	0.12	1	
1,2-Dichlorobenzene	ND	0.50	0.11	1		1,3,5-Trimethylbenzene	0.74	0.50	0.17	1	
1,2-Dichloroethane	ND	0.50	0.095	1		1,1,2,2-Tetrachloroethane	ND	1.0	0.11	1	
1,2-Dichloropropane	ND	0.50	0.11	1		1,2,4-Trimethylbenzene	2.0	1.5	0.33	1	
1,3-Dichlorobenzene	ND	0.50	0.13	1		1,2,4-Trichlorobenzene	ND	2.0	0.72	1	
1,4-Dichlorobenzene	ND	0.50	0.13	1		Vinyl Acetate	ND	2.0	0.45	1	
c-1,3-Dichloropropene	ND	0.50	0.14	1		Vinyl Chloride	ND	0.50	0.10	1	
c-1,2-Dichloroethene	ND	0.50	0.13	1							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>al</u>		Surrogates:	<u>REC (%)</u>	<u>Control</u> <u>Limits</u>	<u>Qu</u>	<u>al</u>	
1,4-Bromofluorobenzene	86	57-129				1,2-Dichloroethane-d4	80	47-137			
Toluene-d8	90	78-156									

Page 9 of 17

CH2M Hill						Date Re	eceived:				08	3/31/10)
1000 Wilshire Blvd.						Work O	rder No				10-0	8-2360	۲ د
21st Elsor						Bropara	tion.				10.00	5 2000 NI/A	, ,
						Flepala	uon.						1
Los Angeles, CA 9001	7-2417					Method:					ΕΡΑ Τ	O-15№	1
			Units:								pr	b (v/v))
Project: SFPP - Norwa	alk Site										Page	• 4 of 4	1
Client Sample Number			Lab Sa Num	ample 1ber		Date/Time Collected	Matrix	Instrument	Date Prepar	ed A	ate/Time nalyzed	QC Bato	h ID
Method Blank			099-12	2-981-7	37	N/A	Air	GC/MS V	N/A	0	8/31/10 14:51	1008311	L01
Comment(s): -Results were	evaluated to th	e MDL, co	oncentrat	ions >=	to the I	MDL but < RL,	if found, are	qualified wit	th a "J" flag	J.			
Parameter	Result	<u>RL</u>	MDL	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	Qua
Acetone	ND	50	25	1		t-1,2-Dichlor	oethene		ND	0.50	0.19	1	
Benzene	ND	0.50	0.094	1		t-1,3-Dichlor	opropene		ND	1.0	0.10	1	
Benzyl Chloride	ND	1.5	0.39	1		Ethylbenzen	e		ND	0.50	0.11	1	
Bromodichloromethane	ND	0.50	0.10	1		4-Ethyltolue	ne		ND	0.50	0.18	1	
Bromoform	ND	0.50	0.15	1		Hexachloro-	1,3-Butadien	е	ND	1.5	0.18	1	
Bromomethane	ND	0.50	0.093	1		2-Hexanone			ND	1.5	0.52	1	
2-Butanone	ND	1.5	0.099	1		Methyl-t-But	yl Ether (MT	BE)	ND	2.0	0.12	1	
Carbon Disulfide	ND	10	5.0	1		Methylene C	hloride		ND	5.0	1.0	1	
Carbon Tetrachloride	ND	0.50	0.098	1		4-Methyl-2-F	Pentanone		ND	1.5	0.15	1	
Chlorobenzene	ND	0.50	0.11	1		o-Xylene			ND	0.50	0.12	1	
Chloroethane	ND	0.50	0.15	1		p/m-Xylene			ND	2.0	0.76	1	
Chloroform	ND	0.50	0.090	1		Styrene			ND	1.5	0.18	1	
Chloromethane	ND	0.50	0.098	1		Tetrachloroe	ethene		ND	0.50	0.11	1	
Dibromochloromethane	ND	0.50	0.11	1		Toluene			ND	5.0	2.0	1	
Dichlorodifluoromethane	ND	0.50	0.14	1		Trichloroethe	ene		ND	0.50	0.11	1	
1,1-Dichloroethane	ND	0.50	0.10	1		Trichlorofluc	romethane		ND	1.0	0.077	1	
1,1-Dichloroethene	ND	0.50	0.11	1		1,1,2-Trichlo	oro-1,2,2-Trif	luoroethane	ND	1.5	0.10	1	
1,2-Dibromoethane	ND	0.50	0.11	1		1,1,1-Trichlo	proethane		ND	0.50	0.10	1	
Dichlorotetrafluoroethane	ND	2.0	0.11	1		1,1,2-Trichlo	proethane		ND	0.50	0.12	1	
1,2-Dichlorobenzene	ND	0.50	0.11	1		1,3,5-Trimet	hylbenzene		ND	0.50	0.17	1	
1,2-Dichloroethane	ND	0.50	0.095	1		1,1,2,2-Tetra	achloroethan	е	ND	1.0	0.11	1	
1,2-Dichloropropane	ND	0.50	0.11	1		1,2,4-Trimet	hylbenzene		ND	1.5	0.33	1	
1,3-Dichlorobenzene	ND	0.50	0.13	1		1,2,4-Trichlo	orobenzene		ND	2.0	0.72	1	
1,4-Dichlorobenzene	ND	0.50	0.13	1		Vinyl Acetate	Э		ND	2.0	0.45	1	
c-1,3-Dichloropropene	ND	0.50	0.14	1		Vinyl Chloric	le		ND	0.50	0.10	1	
c-1,2-Dichloroethene	ND	0.50	0.13	1									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>al</u>		Surrogates:			<u>REC (%)</u>	<u>Contro</u> Limits	<u>א Q</u>	ual	
1.4-Bromofluorobenzene	87	57-129				1.2-Dichloro	ethane-d4		80	47-13	7		
Toluene-d8	92	78-156				,			-				
	-												

RL - Reporting Limit , DF - Dilution Factor , Qual - Qualifiers

7440 Lincoln Way, Gard

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	08/31/10
1000 Wilshire Blvd.	Work Order No:	10-08-2369
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	EPA TO-3M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
EFF-08-31	Air	GC 53	N/A	08/31/10	100831D01
Parameter	Sample Conc	DUP Conc	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	2.8	2.8	3	0-20	

RPD - Relative Percent Difference, CL - Control Limit

CH2M Hill	Date Received:
1000 Wilshire Blvd.	Work Order No:
21st Floor	Preparation:
Los Angeles, CA 90017-2417	Method:

N/A 10-08-2369 N/A ASTM D-1946

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz	ed	LCS/LCSD Batc Number	'n
099-03-002-1,131	Air	GC 36	N/A	08/31/1	0	100831L01	
Parameter	LCS %RE	EC LCSD %	<u>REC %</u>	6REC CL	RPD	RPD CL	Qualifiers
Carbon Dioxide	94	92		80-120	2	0-30	
Oxygen + Argon	88	88		80-120	0	0-30	
Nitrogen	88	88		80-120	0	0-30	

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-2369
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	SCAQMD 25.1M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batc Number	'n
099-07-024-717	Air	GC 14	N/A	08/31/1	0	100831L01	
Parameter	LCS %RI	EC LCSD %	REC <u>%</u>	REC CL	RPD	RPD CL	Qualifiers
Methane	107	106		80-120	1	0-20	
Carbon Monoxide	111	111		80-120	0	0-20	
TGNMO	108	108		80-120	0	0-20	

RPD - Relative Percent Difference, CL - Control Limit

hm

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-08-2369
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	EPA TO-3M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	te /zed	LCS/LCSD Batc Number	h
099-12-476-195	Air	GC 33	N/A	09/01	/10	100901L01	
Parameter	LCS %RE	<u>EC LCSD %</u>	<u>REC 9</u>	6REC CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Methane	98	96		80-120	2	0-20	
Ethane	94	93		80-120	1	0-20	
Propane	94	93		80-120	1	0-20	
Butane	93	93		80-120	0	0-20	
Pentane	92	92		80-120	0	0-20	
Hexane	89	90		80-120	1	0-20	

RPD - Relative Percent Difference, CL - Control Limit

hM

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417 Date Received: Work Order No: Preparation: Method: N/A 10-08-2369 N/A EPA TO-15M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	te /zed	LCS/LCSD E Number	Batch
099-12-981-737	Air	GC/MS V	N/A	08/31/	10	100831L0)1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	101	101	60-156	44-172	1	0-40	
Carbon Tetrachloride	96	96	64-154	49-169	0	0-32	
1,2-Dibromoethane	115	117	54-144	39-159	2	0-36	
1,2-Dichlorobenzene	116	117	34-160	13-181	1	0-47	
1,2-Dichloroethane	85	85	69-153	55-167	0	0-30	
1,2-Dichloropropane	96	96	67-157	52-172	0	0-35	
1,4-Dichlorobenzene	123	123	36-156	16-176	0	0-47	
c-1,3-Dichloropropene	110	109	61-157	45-173	1	0-35	
Ethylbenzene	119	122	52-154	35-171	2	0-38	
o-Xylene	111	113	52-148	36-164	1	0-38	
p/m-Xylene	113	114	42-156	23-175	2	0-41	
Tetrachloroethene	114	117	56-152	40-168	3	0-40	
Toluene	112	114	56-146	41-161	2	0-43	
Trichloroethene	101	100	63-159	47-175	1	0-34	
1,1,2-Trichloroethane	100	99	65-149	51-163	1	0-37	
Vinyl Chloride	77	81	45-177	23-199	5	0-36	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

L M.M

Work Order Number: 10-08-2369

Qualifier *	Definition See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

8	
С Ш	
× ₹	
E E	Õ
Sno	12
ЧÖ	08
<u>A</u> N	ü
U U U	DAT

u

	۳
-	
5	-
נ	
	ü
	Ā

Ĵ	science .	7440 LINCOLN WAY										0	HAIN	I OF CUSTO	DY RECORD	_
Ч.	pvironmental	GARDEN GROVE, CA 928	41-1432									٥	ATE:	08/81/10	n	
	aboratories, inc.	TEL: (714) 895-5494 , FAX:	: (714) 894-7	501								σ.	AGE:	-)F	
LABOR Kind	atory client: er Morgan Energy F	² artners, Attn: Steve D	efinbougl	E	-			JECT NAM	E/NUMB					P.O. NO.:		
1100 ADDRE	Town & Country R	oad			·	R	DIECTO	- NOLY		ē				QUOTE NC		
oran Oran	ge. CA 92868					SAL.	APLER(S)							LAB USE C	NIY	
TEL:	714-560-4802	FAX: 714-560-4601		E-MAIL ames dye@kir	dermorgan.c	E	c /	X	2	\langle / \rangle	\			08	- <u>S</u> 56	
	ROUND TIME	1 48HR 72 HR	504	S S	10 DAYS						REQU	ESTE	D AN/	ALYSIS		
SPEC()	AL REQUIREMENTS (ADDITIONA	L COSTS MAY APPLY)]			<u>}</u>						╞				
	RWOCB REPORTING			_	_			+								
	port to D. Jablonsk ect Bill KMEP/SFPF flags required/Use	I/CH2M HILL, cc: KMEI - Steve Defibaugh-ref - lowest possible detec	P f. AFE# 81 ction limit	1195 : - all me	thods.			CO2, 6H4		<u> </u>						
								۲. uot								
			SAMP	LING	Σ U	D. OF DNT.		21Arg								
LAB Ist	SAMPLE ID	LOCATION/ DESCRIPTION	DATE	TIME	MAT- RIX	-19 	(p-H9T) E-	O) 3491-MT								
ONLY						от	от	SA 9M				-		0	omments	
	INF. 0 8 - 3/	Influent Vapor to SVE	8-31-10	IAIS	Air	ХX	X	\times						Monthly sample		
4	Pre Cat- 08-37	sample port pre Cat	Q1-1E-S	1215	Air	ЖX	\star	XX								
٢	EFF- 08-31	Stack	Q-11 \$	isis!	Air	メイ	R	∧ ×	5							
														, , ;		
a set and a set of the																
	- - - - -															
Reling	uished by: (Signature)				Received	oy: (Signe	D.C.	िर			EN .			Date: 8 / 3 // 1 7	Time: /347/	
Reling	uishearby: (Signature)				Received	by: (Signa	(inter	-						Date: [/]	Time:	
Reling	uished by: (Signature)				Received	by: (Signa	(nre)							Date:	Time:	
Revis	ed: 08/06/10															

- Hiels

1.1.1.1.1.1.

(1-i) = (1-i) + (1-i)

11 - 4

Calscience Environmental	WOF	RK ORDER #:	10-08	Pa 3- [2] [-	ge 17 of 17 ३ ि ट्रि
aboratories, inc.	SAMPLE RE	CEIPT FC	DRM	Box	// of _ ⑦
CLIENT: KINDER MULGAN			DATE: _	<u>08/</u> 3	<u>8//10</u>
TEMPERATURE: Thermomete	r ID: SC1 (Criteria: 0.0 °C	– 6.0 °C, not frozen)		
Temperature•°C	C + 0.5°C (CF) =	•°C [Blank	🗌 Sam	ple
Sample(s) outside temperatur	e criteria (PM/APM contact	ed by:).			
Sample(s) outside temperatur	e criteria but received on ic	e/chilled on same da	ay of sampli	ng.	
Received at ambient temper	rature, placed on ice fo	r transport by Co	urier.		20
Ambient Temperature: 🗹 Air	Filter Metals	Only DPCBs C	Dnly	Initi	al: <u>//J</u>
	No (Not Intact)	Not Present	N/A	Init	ial: <i>L</i>
\Box Sample \Box	\square No (Not Intact)	Not Present		Init	ial: RS
					7
SAMPLE CONDITION:		``	Yes	No	N/A
Chain-Of-Custody (COC) docum	ent(s) received with sam	ples	A		
COC document(s) received com	plete		Ø		
□ Collection date/time, matrix, and/	or # of containers logged in ba	ised on sample labels.			
🗆 No analysis requested. 🛛 🖾 Not	t relinquished. 🛛 🗍 No date/t	ime relinquished.			
Sampler's name indicated on CC	DC				
Sample container label(s) consis	stent with COC	······			
Sample container(s) intact and g	jood condition		7		
Proper containers and sufficient	volume for analyses req	uested	B		
Analyses received within holding	g time		Ø		
pH / Residual Chlorine / Dissolve	ed Sulfide received within	n 24 hours			
Proper preservation noted on CO	C or sample container.	• • • • • • • • • • • • • • • • • • • •			Z
Unpreserved vials received for	Volatiles analysis			_	_ <
Volatile analysis container(s) fre	e of headspace				
Tedlar bag(s) free of condensati CONTAINER TYPE:	on		Ł		
Solid: 40zCGJ 80zCGJ	□16ozCGJ □Sleeve (_) □EnCores	s [®] ⊡Terra	Cores [®] []
Water: □VOA □VOAh □VOA	.na₂ □125AGB □125A	GBh □125AGBp	□1AGB	□1AGB na	₂ □1AGB s
□500AGB □500AGJ □500AG	GJs □250AGB □2500	CGB □250CGBs	□1PB	□500PB []500PB na
□250PB □250PBn □125PB	□125PB znna □100PJ	□100PJ na ₂ □	□	· []
Air: DTedlar® DSumma® Of	ther: 🛛 Trip Bla	ank Lot#:	_ Labeled/	Checked b	y <u>þ</u>
Container: C: Clear A: Amber P: Plastic Preservative: h: HCL n: HNO3 na2:Na2S	G: Glass J: Jar B : Bottle Z: Zip ₂ O ₃ na: NaOH p: H ₂ PO ₄ s: H ₂ S	loc/Resealable Bag E: I O₄ znna: ZnAc₂+NaOH f:	Envelope I	Reviewed b Scanned b	oy: 15
					<u> </u>

SOP	T100	non	(05/10	1/101
JOF	1100	_030	(03) 10	"ייי

i: Al

September 23, 2010

Dan Jablonski CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Subject:Calscience Work Order No.:10-09-1048Client Reference:SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 9/14/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	09/14/10
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 3510C
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sampl Number	e	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-09-14		10-09-104	48-1-G	09/14/10 12:50	Aqueous	GC 49	09/20/10	09/21/10 03:35	100920B15
Comment(s): -Results were evalua	ted to the MDL,	concentrations >	= to the I	MDL but < RL	_, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Fuel Product	10000	500	430	1		Qual	ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits	MDL			Qual			
Decachlorobiphenyl	135	68-140							
Method Blank		099-12-3	84-31	N/A	Aqueous	GC 49	09/20/10	09/21/10 02:49	100920B15
Comment(s): -Results were evalua	ted to the MDL,	concentrations >	= to the I	MDL but < RL	_, if found, ar	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL	<u> </u>	<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Fuel Product	ND	500	430	1			ug/L		
Surrogates:	<u>REC (%)</u>	Control Limits	MDL			Qual			
Decachlorobiphenyl	138	68-140							

n M

Page 2 of 13

Page 1 of 1

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	09/14/10
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)
Project: SFPP - Norwalk Site		Page 1 of 1

Project: SFPP - Norwalk Site

Client Sample Number		Lab Sampl Number	e	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
INF-09-14		10-09-104	48-1-E	09/14/10 12:50	Aqueous	GC 42	09/14/10	09/15/10 10:05	100914B02
Comment(s): -Results were evaluate	uated to the MD	L, concentrations	s >= to th	ne MDL but	<pre>RL, if found</pre>	d, are qualified	d with a "J" fl	ag.	
Parameter	<u>Result</u>	<u>RL</u>	<u>MDL</u>		<u>DF</u>	Qual	<u>Units</u>		
TPH as Gasoline <u>Surrogates:</u>	9400 <u>REC (%)</u>	1000 <u>Control Limits</u>	480 <u>MDL</u>	1()	Qual	ug/L		
1,4-Bromofluorobenzene	70	38-134							
Method Blank		099-12-24	17-4,496	N/A	Aqueous	GC 42	09/14/10	09/14/10 18:51	100914B02
Comment(s): -Results were evaluation	ted to the MDL, o	concentrations >:	= to the N	1DL but < R	L, if found, are	e qualified with	n a "J" flag.		
Parameter	<u>Result</u>	<u>RL</u>	MDL		<u>DF</u>	<u>Qual</u>	<u>Units</u>		
TPH as Gasoline <u>Surrogates:</u>	ND <u>REC (%)</u>	100 Control Limits	48 <u>MDL</u>	1		Qual	ug/L		
1,4-Bromofluorobenzene	66	38-134							

~ M

TED IN ACCORDAN

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

1	DIN	AUU	ROA	
0°		1	N	2
5	76			44
2				

													-
CH2M Hill						Date R	eceived:				09)/14/1	0
1000 Wilshire Blvd.						Work (Order No.				10-0	9-104	8
21st Floor						Dropar	ation.					5 10 1	\tilde{c}
	7 0 4 4 7					Matha						0000	
Los Angeles, CA 9001	-2417					Method) :				EPA	82600	C
						Units:						ug/	L
Project: SFPP - Norwa	lk Site										Page	e 1 of	2
Client Sample Number			Lab Nເ	Sample umber		Date/Time Collected	Matrix	Instrument	Date Prepa	e D red /	Date/Time Analyzed	QC Bat	tch ID
INF-09-14			10-0	9-1048-	1-A	09/14/10 12:50	Aqueous	GC/MS OC	09/22/	10	09/22/10 17:01	100922	2L01
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentr	ations >:	= to the l	MDL but < RI	L, if found, ar	e qualified wi	th a "J" flag	g.			
Parameter	Result	<u>RL</u>	MDL	DF	Qual	Parameter			Result	 <u>RL</u>	MDL	DF	Qua
Acetone	ND	2500	1000	50		c-1,3-Dich	loropropene		ND	25	14	50	
Benzene	4900	25	14	50		t-1,3-Dichl	oropropene		ND	25	18	50	
Bromobenzene	ND	50	17	50		Ethylbenze	ene		170	50	11	50	
Bromochloromethane	ND	50	35	50		2-Hexanon	e		ND	500	340	50	
Bromodichloromethane	ND	50	17	50		Isopropylb	enzene		23	50	11	50	J
Bromoform	ND	50	28	50		p-Isopropy	Itoluene		ND	50	13	50	
Bromomethane	ND	500	210	50		Methylene	Chloride		ND	500	130	50	
2-Butanone	ND	500	350	50		4-Methyl-2	-Pentanone		ND	500	220	50	
n-Butylbenzene	27	50	14	50	J	Naphthale	ne		170	500	130	50	J
sec-Butylbenzene	ND	50	10	50		n-Propylbe	enzene		59	50	40	50	
tert-Butylbenzene	ND	50	14	50		Styrene			ND	50	15	50	
Carbon Disulfide	ND	500	96	50		1,1,1,2-Te	trachloroethai	ne	ND	50	18	50	
Carbon Tetrachloride	ND	25	21	50		1,1,2,2-Te	trachloroethai	ne	ND	50	22	50	
Chlorobenzene	ND	50	11	50		Tetrachlor	oethene		ND	50	26	50	
Chloroethane	ND	250	64	50		Toluene			1100	50	16	50	
Chloroform	ND	50	17	50		1,2,3-Trich	lorobenzene		ND	50	15	50	
Chloromethane	ND	500	24	50		1,2,4-Trich	lorobenzene		ND	50	24	50	
2-Chlorotoluene	ND	50	28	50		1,1,1-Trich	loroethane		ND	50	22	50	
4-Chlorotoluene	ND	50	11	50		1,1,2-Trich	nloro-1,2,2-Tri	fluoroethane	ND	500	32	50	
Dibromochloromethane	ND	50	24	50		1,1,2-Trich	loroethane		ND	50	27	50	
1,2-Dibromo-3-Chloropropane	ND	250	160	50		Trichloroet	hene		ND	50	15	50	
1,2-Dibromoethane	ND	50	23	50		Trichloroflu	uoromethane		ND	500	16	50	
Dibromomethane	ND	50	29	50		1,2,3-Trich	loropropane		ND	250	67	50	
1,2-Dichlorobenzene	ND	50	14	50		1,2,4-Trim	ethylbenzene		340	50	12	50	
1,3-Dichlorobenzene	ND	50	14	50		1,3,5-Trim	ethylbenzene		110	50	12	50	
1,4-Dichlorobenzene	ND	50	11	50		Vinyl Aceta	ate		ND	500	350	50	
Dichlorodifluoromethane	ND	50	25	50		Vinyl Chlor	ride		ND	25	16	50	
1,1-Dichloroethane	ND	50	19	50		p/m-Xylene	e		960	50	23	50	
1,2-Dichloroethane	ND	25	16	50		o-Xylene			380	50	12	50	
1,1-Dichloroethene	ND	50	20	50		Methyl-t-B	utyl Ether (M	BE)	380	50	15	50	
c-1,2-Dichloroethene	ND	50	24	50		Tert-Butyl	Alcohol (TBA)	6600	500	180	50	
t-1,2-Dichloroethene	ND	50	20	50		Diisopropy	l Ether (DIPE)	34	100	15	50	J
1,2-Dichloropropane	ND	50	19	50		Ethyl-t-But	yl Ether (ETB	É)	ND	100	13	50	
1,3-Dichloropropane	ND	50	19	50		Tert-Amvl-	Methyl Ether	(TAME)	ND	100	14	50	
2,2-Dichloropropane	ND	50	23	50		Ethanol		. ,	ND	5000	2500	50	
1,1-Dichloropropene	ND	50	13	50									
Surrogates:	<u>REC (%)</u>	<u>Control</u>	<u>C</u>	<u>)ual</u>		Surrogates	<u>:</u>		<u>REC (%)</u>	<u>Contr</u>	<u>ol Q</u>	ual	
Dibromofluoromethana	104	80.126				1.2 Diable	roothana d		105	80 12	<u>-</u> 21		
	104	00-120						_	105	00-13	20		
i oluene-as	101	00-120				1,4-Bromo	nuoropenzen	9	97	00-12	20		

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 4 of 13

1ES	IN ACC	ORDAN
RED		Cm
00	Ie k	

CH2M Hill					Date R	eceived:				09	9/14/10	0
1000 Wilshire Blvd.		Work Order No: 10-09-1048								8		
21st Floor					Prenar	ation				FDA	50300	2
	7 0 4 4 7									, ,		
Los Angeles, CA 90017	-2417				Nethod	1:				EPA	82600	ر
					Units:						ug/l	L
Project: SFPP - Norwa	lk Site									Page	e 2 of 2	2
Client Sample Number			Lab Sa Numl	mple per	Date/Time Collected	Matrix	Instrument	Date Prepa	e Da red A	ate/Time nalyzed	QC Bat	ch ID
Method Blank			099-14	-106-153	N/A	Aqueous	GC/MS OO	09/22/	10 0	9/22/10 14:17	100922	L01
Comment(s): -Results were	evaluated to th	ne MDL, c	oncentratio	ons >= to the	MDL but < RL	, if found, ar	e qualified wit	h a "J" flag	g.			
Parameter	<u>Result</u>	RL	MDL	DF Qual	Parameter		•	Result	RL	MDL	DF	Qual
Acetone	ND	50	20	1	c-1.3-Dichl	oropropene		ND	0.50	0.28	1	
Benzene	ND	0.50	0.28	1	t-1,3-Dichle	propropene		ND	0.50	0.36	1	
Bromobenzene	ND	1.0	0.33	1	Ethylbenze	ne		ND	1.0	0.22	1	
Bromochloromethane	ND	1.0	0.69	1	2-Hexanon	е		ND	10	6.9	1	
Bromodichloromethane	ND	1.0	0.33	1	Isopropylbe	enzene		ND	1.0	0.23	1	
Bromoform	ND	1.0	0.55	1	p-Isopropy	toluene		ND	1.0	0.26	1	
Bromomethane	ND	10	4.3	1	Methylene	Chloride		ND	10	2.6	1	
2-Butanone	ND	10	6.9	1	4-Methyl-2-	Pentanone		ND	10	4.4	1	
n-Butylbenzene	ND	1.0	0.28	1	Naphthaler	e		ND	10	2.5	1	
sec-Butylbenzene	ND	1.0	0.20	1	n-Propylbe	nzene		ND	1.0	0.79	1	
tert-Butylbenzene	ND	1.0	0.28	1	Styrene			ND	1.0	0.30	1	
Carbon Disulfide	ND	10	1.9	1	1,1,1,2-Tet	rachloroethai	ne	ND	1.0	0.35	1	
Carbon Tetrachloride	ND	0.50	0.43	1	1,1,2,2-Tet	rachloroethai	ne	ND	1.0	0.44	1	
Chlorobenzene	ND	1.0	0.22	1	Tetrachloro	ethene		ND	1.0	0.51	1	
Chloroethane	ND	5.0	1.3	1	Toluene			ND	1.0	0.33	1	
Chloroform	ND	1.0	0.33	1	1,2,3-Trich	lorobenzene		ND	1.0	0.31	1	
Chloromethane	ND	10	0.49	1	1,2,4-Trich	lorobenzene		ND	1.0	0.49	1	
2-Chlorotoluene	ND	1.0	0.55	1	1,1,1-Trich	loroethane		ND	1.0	0.45	1	
4-Chlorotoluene	ND	1.0	0.21	1	1,1,2-Trich	loro-1,2,2-Tri	fluoroethane	ND	10	0.64	1	
Dibromochloromethane	ND	1.0	0.48	1	1,1,2-Trich	loroethane		ND	1.0	0.54	1	
1,2-Dibromo-3-Chloropropane	ND	5.0	3.1	1	Trichloroet	nene		ND	1.0	0.30	1	
1,2-Dibromoethane	ND	1.0	0.47	1	Trichloroflu	oromethane		ND	10	0.31	1	
Dibromomethane	ND	1.0	0.59	1	1,2,3-Trich	loropropane		ND	5.0	1.3	1	
1,2-Dichlorobenzene	ND	1.0	0.27	1	1,2,4-Trime	ethylbenzene		ND	1.0	0.24	1	
1,3-Dichlorobenzene	ND	1.0	0.28	1	1,3,5-Trime	ethylbenzene		ND	1.0	0.23	1	
1,4-Dichlorobenzene	ND	1.0	0.21	1	Vinyl Aceta	te		ND	10	7.1	1	
Dichlorodifluoromethane	ND	1.0	0.49	1	Vinyl Chlor	ide		ND	0.50	0.33	1	
1,1-Dichloroethane	ND	1.0	0.37	1	p/m-Xylene	•		ND	1.0	0.45	1	
1,2-Dichloroethane	ND	0.50	0.31	1	o-Xylene			ND	1.0	0.24	1	
1,1-Dichloroethene	ND	1.0	0.40	1	Methyl-t-Bu	ityl Ether (M	ĒBE)	ND	1.0	0.30	1	
c-1,2-Dichloroethene	ND	1.0	0.49	1	Tert-Butyl	Alcohol (TBA)	ND	10	3.5	1	
t-1,2-Dichloroethene	ND	1.0	0.40	1	Diisopropyl	Ether (DIPE)	ND	2.0	0.31	1	
1,2-Dichloropropane	ND	1.0	0.38	1	Ethyl-t-Buty	/I Ether (ETB	E)	ND	2.0	0.27	1	
1,3-Dichloropropane	ND	1.0	0.38	1	Tert-Amyl-l	Methyl Ether	(TAME)	ND	2.0	0.28	1	
2,2-Dichloropropane	ND	1.0	0.46	1	Ethanol			ND	100	50	1	
1,1-Dichloropropene	ND	1.0	0.26	1								
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qua</u>	<u>l</u>	Surrogates	<u>.</u>		<u>REC (%)</u>	<u>Contro</u> Limits	<u>ol Q</u>	<u>lual</u>	
Dibromofluoromethane	106	80-126			1,2-Dichlor	oethane-d4		111	80-13	1		
Toluene-d8	100	80-120			1,4-Bromol	luorobenzen	Э	98	80-12	0		
					,			-				

RL - Reporting Limit , DF - Dilution Factor ,

Qual - Qualifiers

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 5 of 13

CH2M Hill	Date Received:	09/14/10
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	А	Date Analyzed	MS/MSD Batch Number
10-09-0854-1	Aqueous	GC 42	09/14/10	C	09/14/10	100914S02
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
TPH as Gasoline	110	106	68-122	3	0-18	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	09/14/10
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 5030C
Los Angeles, CA 90017-2417	Method:	EPA 8260C

Project SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared		Date Analyzed	MS/MSD Batch Number
10-09-0809-17	Aqueous	GC/MS OO	09/22/10		09/22/10	100922S01
Parameter	MS %REC	MSD %REC	<u>%REC CL</u>	<u>RPD</u>	<u>RPD CL</u>	<u>Qualifiers</u>
Benzene	105	103	80-120	2	0-20	
Carbon Tetrachloride	100	97	55-151	3	0-20	
Chlorobenzene	98	97	80-120	1	0-20	
1,2-Dibromoethane	101	99	77-125	1	0-20	
1,2-Dichlorobenzene	96	96	78-120	0	0-20	
1,2-Dichloroethane	97	99	80-120	2	0-20	
1,1-Dichloroethene	113	112	69-129	2	0-20	
Ethylbenzene	102	101	73-127	1	0-20	
Toluene	101	100	80-120	2	0-20	
Trichloroethene	100	98	67-133	3	0-20	
Vinyl Chloride	128	132	67-133	4	0-20	
Methyl-t-Butyl Ether (MTBE)	106	104	65-131	2	0-22	
Tert-Butyl Alcohol (TBA)	100	104	62-134	4	0-20	
Diisopropyl Ether (DIPE)	123	120	64-136	3	0-29	
Ethyl-t-Butyl Ether (ETBE)	114	111	70-124	3	0-20	
Tert-Amyl-Methyl Ether (TAME)	106	107	71-125	1	0-20	
Ethanol	100	109	44-152	8	0-43	

RPD - Relative Percent Difference, CL - Control Limit

hu 7440 Lincoln Way, Garden Grove, CA 92841-1427 . TEL:(714) 895-5494 ·

494 · FAX: (714) 894-7501

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 3510C
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyz	ed	LCS/LCSD Batc Number	h
099-12-384-31	Aqueous	GC 49	09/20/10	10 09/21/10		100920B15	
Parameter	LCS %	<u>REC LCSD</u>	<u>%REC %</u>	6REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Fuel Product	113	106	6	75-117	6	0-13	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 5030B
Los Angeles, CA 90017-2417	Method:	EPA 8015B (M)

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepare	D ed Ana	ate lyzed	LCS/LCSD Batc Number	h
099-12-247-4,496	Aqueous	GC 42	09/14/1	1/10 09/14/10		100914B02	
Parameter	LCS %	REC LC	SD %REC	%REC CL	<u>RPD</u>	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	113		111	78-120	2	0-10	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

	Dete Deserved	N1/A
	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-09-1048
21st Floor	Preparation:	EPA 5030C
Los Angeles, CA 90017-2417	Method:	EPA 8260C

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Anal	ate yzed	LCS/LCSD I Numbe	Batch
099-14-106-153	Aqueous	GC/MS OO	09/22/10	09/22/10		100922L	01
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	<u>RPD CL</u>	Qualifiers
Benzene	104	103	80-120	73-127	1	0-20	
Carbon Tetrachloride	101	98	67-139	55-151	4	0-22	
Chlorobenzene	98	97	80-120	73-127	1	0-20	
1,2-Dibromoethane	101	106	80-120	73-127	5	0-20	
1,2-Dichlorobenzene	97	98	79-120	72-127	1	0-20	
1,2-Dichloroethane	99	101	80-120	73-127	2	0-20	
1,1-Dichloroethene	116	111	71-125	62-134	4	0-25	
Ethylbenzene	103	99	80-123	73-130	4	0-20	
Toluene	101	100	80-120	73-127	1	0-20	
Trichloroethene	100	99	80-120	73-127	1	0-20	
Vinyl Chloride	132	129	68-140	56-152	3	0-23	
Methyl-t-Butyl Ether (MTBE)	107	118	75-123	67-131	9	0-25	
Tert-Butyl Alcohol (TBA)	102	113	72-126	63-135	11	0-20	
Diisopropyl Ether (DIPE)	121	126	75-129	66-138	4	0-22	
Ethyl-t-Butyl Ether (ETBE)	114	122	76-124	68-132	7	0-20	
Tert-Amyl-Methyl Ether (TAME)	110	121	79-121	72-128	9	0-20	
Ethanol	99	104	53-143	38-158	5	0-25	

Total number of LCS compounds: 17 Total number of ME compounds : 0 Total number of ME compounds allowed : 1 LCS ME CL validation result : Pass

nM

RPD - Relative Percent Difference, CL - Control Limit

> 7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

hM

Glossary of Terms and Qualifiers

Work Order Number: 10-09-1048

Qualifier *	<u>Definition</u> See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
Е	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Catscience		7440 LINCOLN WAY											-	CHA	N N		Y RECORD
aborat	ories, inc.	ЧАКИЕN ЧКОVЕ, СА 928 ТЕL: (714) 895-5494 . FAX	141-1432 (; (714) 894-)	7501										PAGE		1-14-10 1 0F	-
LABORATORY CLIE	n⊤: an Energy Pá	artners, Attn: Steve D	efibaugh					ROJECT	NAME / N	JMBER:						P.O. NO.:	
ADDRESS: 1100 Town &	Country Ro	ad					PROJECT	CONTAC		Site						QUOTE NO.:	
orry: Orange CA 5	12868						Jam		e e							FAB LICE ONLY	
TEL: 714-56	0-4802	FAX: 714-560-460	-	E-MAIL james dye@k	indermorgar	.com			$\left(\right)$	Ŕ							704R
	Y 🗌 24 HR		5 D/	\ ∆Vs	10 DA)	જ					2	l	ESTI	ID AI	AL)	/SIS	
	AEPORTING	COSTS MAY APPLY)	S UNTI	-	-	6	\vdash		┣─	(8097							
SPECIAL INSTRUCT Report to [Direct Bill "J" flags re	IONS O. Jablonski/ KMEP/SFPP iquired/Use I	CH2M HILL, cc: KME - Steve Defibaugh-re lowest possible dete	P f. AFE# 8 ction limi	1195 t - all me	thods.				(WS10	S-DCA;MEK(8)	((2.09r) s	(020)				
			SAMD			NO. OF		(8092	(1. 8) (Vli	(1;A)	2.031)	spilog	6612	TAT 9			
			SAMP			CONT.	() ()	28) J	1013 1013	00-1) spi	s pə	699 (L-1	4 HE			
SA LAB SA ONLY	WPLE ID	LOCATION/ DESCRIPTION	DATE	TIME	MAT- RIX		N2108) g - H9T M2108) qî-H9T	VOCs, Full Lis) 926970 & IO 		Settleable Soli	puedene letoT	Phenonics (42(2 no muinele2		Com	and the state of t
/ INF- C	9-14	Influent	01-11-6	1250	M	~	××	×					-			Temperature* =	
													-			(Temp. as	sampled*)
															2	Aonthly	
on and the second s																	
													 				
		7.															
			$\overline{\mathbf{A}}$									<u></u>					
Relinquished by: (S	ignature)	M			Received	d by: (Sig	nature)	0	22	5		E			 	Date://14/10	Time: 1414
Retinquished by: (S	jgađiure)	X			Received	1 by: (Sig	nature)			b					[Date:	Time:
Relinquished by: (S	ignature)				Received	1 by: (Sig	nature)								<u> </u>	Date:	Time:
Revised: 08/0	5/10																

		Pa	ge 13 of 13
Calscience - W/OPK OPDER #	10-0		0 F
SAMPLE RECEIPT FO	RM	Cooler	l of /
CLIENT: KMEP	DATE	:09 /	14/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0.0 °C – 6.0 °C, not froze	n)		
Temperature $\underline{2} \cdot \underline{2} \circ C + 0.5 \circ C (CF) = \underline{2} \cdot \underline{7} \circ C$	🗆 Blank	: ⊠ San	nple
□ Sample(s) outside temperature criteria (PM/APM contacted by:).			
□ Sample(s) outside temperature criteria but received on ice/chilled on same of	ay of sam	ipling.	
Received at ambient temperature, placed on ice for transport by Co	ourier.		
Ambient Temperature:	Only	Init	ial: <u>b.C</u>
CUSTODY SEALS INTACT:			
□ Cooler □ □ No (Not Intact) ☑ Not Present	🗆 N//	A Ini	tial:
□ Sample □ □ No (Not Intact) ☑ Not Present		Ini	tial: <u>/</u> /
SAMPLE CONDITION:	Yes	No	N/A
Chain-Of-Custody (COC) document(s) received with samples			
COC document(s) received complete	🗹		
\Box Collection date/time, matrix, and/or # of containers logged in based on sample labels	i.		
\Box No analysis requested. \Box Not relinquished. \Box No date/time relinquished.			
Sampler's name indicated on COC	. 🗹		
Sample container label(s) consistent with COC			
Sample container(s) intact and good condition			
Proper containers and sufficient volume for analyses requested			
Analyses received within holding time	ß		
pH / Residual Chlorine / Dissolved Sulfide received within 24 hours	. 🗆		9
Proper preservation noted on COC or sample container	. 🗹		
□ Unpreserved vials received for Volatiles analysis	,		
Volatile analysis container(s) free of headspace	. 🏿		
Tedlar bag(s) free of condensation	. 🗆		ď
	s® ⊡Teri	raCores® []
Water: □VOA ₽VOĂh □VOAna₂ □125AGB □125AGBh □125AGBp	□1AGB	□1AGB na	ı₂ □1AGB s
□500AGB ☑500AGJ □500AGJs □250AGB □250CGB □250CGBs	a ⊡1PB	□500PB []500PB na
□250PB □250PBn □125PB □125PBznna □100PJ □100PJna₂ □		[]
Air: ☐Tedlar [®] ☐Summa [®] Other: ☐ Trip Blank Lot#: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle Z: Ziploc/Resealable Bag E: Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s: H ₂ SO ₄ znna: ZnAc ₂ +NaOH f	Labeled Envelope F: Field-filtered	d/Checked b Reviewed b Scanned I	y: <u>+)(</u> by: <u>//////</u> by: <u>_//</u>
	· · · · · · · · · · · · · · · · · · ·	so	P T100_090 (05/10/10)

.

T

SOP	T100_	_090	(05/10/1	0)
-----	-------	------	----------	----

September 21, 2010

Dan Jablonski CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Subject: Calscience Work Order No.: 10-09-1049 Client Reference: SFPP - Norwalk Site

Dear Client:

Enclosed is an analytical report for the above-referenced project. The samples included in this report were received 09/14/2010 and analyzed in accordance with the attached chain-of-custody.

Calscience Environmental Laboratories certifies that the test results provided in this report meet all NELAC requirements for parameters for which accreditation is required or available. Any exceptions to NELAC requirements are noted in the case narrative. The original report of subcontracted analysis, if any, is provided herein, and follows the standard Calscience data package. The results in this analytical report are limited to the samples tested and any reproduction thereof must be made in its entirety.

If you have any questions regarding this report, please do not hesitate to contact the undersigned.

Sincerely,

Monde

Calscience Environmental Laboratories, Inc. Stephen Nowak Project Manager

CA-ELAP ID: 1230 · NELAP ID: 03220CA · CSDLAC ID: 10109 · SCAQMD ID: 93LA0830 7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Case Narrative

Work Order # 10-09-1049 Modified EPA TO-14A or EPA TO-15

EPA Methods TO-14A and TO-15 describe gas chromatographic procedures that will allow for that separation of volatile organic compounds and their qualitative and quantitative analysis by mass spectrometry (GC/MS). A known volume of sample is directed from the container (Summa® canister or Tedlar[™] bag) through a solid multi-module (glass beads, tenex, cryofocuser) concentrator. Following concentration, the VOCs are thermally desorbed onto a gas chromatographic column for separation and then detected on a mass selective detector.

Comparison of EPA TO-14A/TO-15 versus Calscience EPA TO-14A/TO-15 (Modified)

Requirement	EPA Method	Calscience Modifications
BFB Acceptance Criteria	CLP Protocol	SW846 Protocol
Initial Calibration	Allowable % RSD for each Target Analyte <= 30%, two analytes allowed <= 40%	Allowable % RSD for each Target Analyte <= 30%, 10% of analytes allowed <= 40%
Initial Calibration Verification (ICV) - Second Source Standard (LCS)	Not Mentioned	Analytes contained in the LCS standard evaluated against historical control limits for the LCS
Daily Calibration Verification (CCV)	Allowable % Difference for each Target Analyte is <= 30%	Full List Analysis: Allowable % Difference for each CCC analyte is <= 30%
		Target List Analysis: Allowable % Difference for each target analytes is <= 30%
Daily Calibration Verification (CCV) - Internal Standard Area Response	Allowable +/- 40% (Range: 60% to 140%)	Allowable +/- 50% (Range: 50% to 150%)
Method Blank, Laboratory Control Sample and Sample - Internal Standard Area Response	Allowable +/- 40% of the mean area response of most recent Initial Calibration (Range: 60% to 140%)	Allowable +/- 50% of the mean area response of the most recent Calibration Verification (Range: 50% to 150%)
Surrogates	Not Mentioned	1,4-Bromoflurobenzene, 1,2-Dichloroethane-d4 and Toluene-d8 - % Recoveries based upon historical control limits +/-3S

Client:	CH2M Hill	Work Order:	10-09-1049
	1000 Wilshire Blvd.	Project name:	SFPP - Norwalk Site
	21st Floor	Received:	09/14/10 14:45
Attn:	Dan Jablonski		

DETECTIONS SUMMARY

Client Sample ID			Reporting			
Analyte	Result	Qualifiers	Limit	Units	Method	Extraction
INF-09-14						
Oxygen + Argon	21.6		0.500	%v	ASTM D-1946	N/A
TPH as Gasoline	6.1		1.5	ppm (v/v)	EPA TO-3M	N/A
Benzene	63		0.80	ppb (v/v)	EPA TO-15M	N/A
Ethylbenzene	15		0.80	ppb (v/v)	EPA TO-15M	N/A
4-Ethyltoluene	5.5		0.80	ppb (v/v)	EPA TO-15M	N/A
o-Xylene	25		0.80	ppb (v/v)	EPA TO-15M	N/A
p/m-Xylene	59		3.2	ppb (v/v)	EPA TO-15M	N/A
Toluene	57		8.0	ppb (v/v)	EPA TO-15M	N/A
1,3,5-Trimethylbenzene	7.3		0.80	ppb (v/v)	EPA TO-15M	N/A
1,2,4-Trimethylbenzene	14		2.4	ppb (v/v)	EPA TO-15M	N/A

Subcontracted analyses, if any, are not included in this summary.

*MDL is shown.

MM

7440 Lincoln Way, Garden Grove, CA 92841-1427 · TEL:(714) 895-5494 · FAX: (714) 894-7501

Page 4 of 13

CH2M Hill							Date Re	eceived:				09)/14/1	0
1000 Wilshir	e Blvd.						Work O	rder No:				10-0	9-104	9
21st Floor							Prepara	tion:					N//	4
Los Angeles	, CA 90017-2	2417					Method:					ASTM [D-194	6
Ū							Units:						%	v
Project: SFF	PP - Norwalk	Site										Page	e 1 of	1
Client Sample Nur	mber			Lab Sa Num	ample 1ber		Date/Time Collected	Matrix	Instrument	Date Prepa	ə D red A	ate/Time Analyzed	QC Bat	ch ID
INF-09-14				10-09-	- 1049- 1	- A	09/14/10 12:00	Air	GC 36	N/A)9/14/10 15:52	100914	L01
Comment(s):	-Results were eva	aluated to t	he MDL, c	concentrati	ions >=	to the N	MDL but < RL,	if found, a	e qualified wi	th a "J" flag	g.			
Parameter		<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qual</u>	Parameter			<u>Result</u>	<u>RL</u>	MDL	DF	<u>Qual</u>
Methane		ND	0.500	0.0981	1		Oxygen + Ai	rgon		21.6	0.500	0.370	1	
Carbon Dioxide		ND	0.500	0.344	1									
Method Blank				099-03	3 -002- 1	,139	N/A	Air	GC 36	N/A	. (09/14/10 09:08	100914	L01
Comment(s):	-Results were eva	aluated to t	he MDL, c	concentrati	ions >=	to the N	MDL but < RL,	if found, a	e qualified wi	th a "J" flag	g.			
Parameter et al		<u>Result</u>	<u>RL</u>	<u>MDL</u>	<u>DF</u>	Qual	Parameter			<u>Result</u>	<u>RL</u>	MDL	<u>DF</u>	Qual
Methane		ND	0.500	0.0981	1		Oxygen + Ai	rgon		ND	0.500	0.370	1	
Carbon Dioxide		ND	0.500	0.344	1		Nitrogen			ND	0.500	0.174	1	
Carbon Monoxide		ND	0.500	0.272	1									

MM

CH2M Hill		Date R	eceived	d:			09/14/10
1000 Wilshire Blvd.		Work C	Order No	0:		1(0-09-1049
21st Floor		Prepar	ation:				N/A
Los Angeles, CA 90017-2417		Method	d:			EF	РА ТО-ЗМ
Project: SFPP - Norwalk Site						ł	Page 1 of 1
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID

INF-09-14 09/14/10 12:00 09/14/10 100914L01 10-09-1049-1-A Air GC 13 N/A 15:53 Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Parameter Result RL MDL DF Qual <u>Units</u> TPH as Gasoline 1.5 1 6.1 0.17 ppm (v/v) 09/14/10 Method Blank 098-01-005-2,605 N/A Air GC 13 N/A 09:05

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag. Parameter Result <u>RL</u> MDL DF Qual Units

TPH as Gasoline	ND	1.5	0.17	1	ppm (v/v)
					•• • •

Page 5 of 13

IN ACCORD

100914L01

	ED	114	ORL	AN	
2	2			Cr	1
C A		(E	21		AN 1
<pre>V</pre>					

Page 6 of 13

INF-09-14	10-09-1049-1-A	09/14/10 12:00	Air	GC/MS AA	N/A	09/14/10 16:27	100914L01
Client Sample Number	Lab Sample Number	Date/Time Collected	Matrix	Instrument	Date Prepared	Date/Time Analyzed	QC Batch ID
Project: SFPP - Norwalk Site						Page	e 1 of 2
		Units:	-			р	pb (v/v)
Los Angeles. CA 90017-2417		Method	:			EPA 1	O-15M
21st Floor		Prepara	ation:				N/A
1000 Wilshire Blvd.		Work O	rder No):		10-0	9-1049
CH2M Hill		Date Re	eceived	:		0	9/14/10

Comment(s): -Results were evaluated to the MDL, concentrations >= to the MDL but < RL, if found, are qualified with a "J" flag.

-The method has been modified to use Tedlar bags instead of Summa Canisters

Parameter	Result	RI	MDI	DF	Qual	Parameter	Result	RI	MDI	DF	Qual
Acotono	ND	80	<u>40</u>	16	Quu	t 1.2 Dichloroothono		0.80	0.30	16	deua
Benzene	62	0.80	40 0 15	1.0		t-1,2-Dichloropropene		1.6	0.30	1.0	
Benzyl Chloride		2.4	0.10	1.6		Ethylbenzene	15	0.80	0.10	1.0	
Bromodichloromethane		0.80	0.05	1.0			55	0.00	0.10	1.0	
Bromoform		0.00	0.10	1.6		Hexachloro-1 3-Butadiene	0.0 ND	24	0.20	1.0	
Bromomethane		0.00	0.24	1.6		2-Hevanone		2.4	0.20	1.0	
2-Butanone		24	0.16	1.6		Methyl-t-Butyl Ether (MTBE)		32	0.00	1.6	
Carbon Disulfide	ND	16	8.0	1.6		Methylene Chloride		8.0	1.6	1.6	
Carbon Tetrachloride		0.80	0.0	1.6		A-Methyl-2-Pentanone		24	0.24	1.6	
Chlorobenzene		0.80	0.10	1.6		o-Xvlene	25	0.80	0.24	1.6	
Chloroethane	ND	0.80	0.25	1.6		p/m-Xylene	59	3.2	12	1.6	
Chloroform	ND	0.80	0.14	1.6		Styrene	ND	2.4	0.29	1.6	
Chloromethane	ND	0.80	0.16	1.6		Tetrachloroethene	ND	0.80	0.18	1.6	
Dibromochloromethane	ND	0.80	0.18	1.6		Toluene	57	8.0	3.2	1.6	
Dichlorodifluoromethane	ND	0.80	0.23	1.6		Trichloroethene	ND	0.80	0.17	1.6	
1.1-Dichloroethane	ND	0.80	0.16	1.6		Trichlorofluoromethane	ND	1.6	0.12	1.6	
1.1-Dichloroethene	ND	0.80	0.18	1.6		1.1.2-Trichloro-1.2.2-Trifluoroethane	ND	2.4	0.16	1.6	
1.2-Dibromoethane	ND	0.80	0.18	1.6		1.1.1-Trichloroethane	ND	0.80	0.16	1.6	
Dichlorotetrafluoroethane	ND	3.2	0.18	1.6		1.1.2-Trichloroethane	ND	0.80	0.19	1.6	
1,2-Dichlorobenzene	ND	0.80	0.18	1.6		1,3,5-Trimethylbenzene	7.3	0.80	0.27	1.6	
1.2-Dichloroethane	ND	0.80	0.15	1.6		1.1.2.2-Tetrachloroethane	ND	1.6	0.17	1.6	
1,2-Dichloropropane	ND	0.80	0.18	1.6		1,2,4-Trimethylbenzene	14	2.4	0.52	1.6	
1,3-Dichlorobenzene	ND	0.80	0.21	1.6		1,2,4-Trichlorobenzene	ND	3.2	1.2	1.6	
1,4-Dichlorobenzene	ND	0.80	0.22	1.6		Vinyl Acetate	ND	3.2	0.73	1.6	
c-1,3-Dichloropropene	ND	0.80	0.22	1.6		Vinyl Chloride	ND	0.80	0.16	1.6	
c-1,2-Dichloroethene	ND	0.80	0.21	1.6							
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	<u>Qu</u>	<u>al</u>		Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u>al</u>	
1,4-Bromofluorobenzene	105	57-129				1,2-Dichloroethane-d4	97	47-137			
Toluene-d8	95	78-156									

A DECORDANCE

Page 7 of 13

													-
CH2M Hill						Date Re	ceived:				09	/14/10)
1000 Wilshire Blvd.						Work Or	rder No.				10-00	3-1040	c
21st Floor						Prenara	tion.				10.00	5 1040 NI//	, \
	0447						uon.						1
Los Angeles, CA 90017-	2417					Method:					EPA I	O-15№	/
						Units:					рр	∍b (v/v)
Project: SFPP - Norwalk	Site										Page	2 of 2	2
			Lab Sa	mple		Date/Time			Date	e Da	ate/Time		-
Client Sample Number			Numb	ber		Collected	Matrix	Instrument	Prepar	ed A	nalyzed	QC Bate	ch ID
Method Blank			099-12·	981-7	80	N/A	Air	GC/MS AA	N/A	0	9/14/10 15:09	100914	L01
Comment(s): -Results were ev	aluated to th	e MDL, co	oncentratio	ns >=	to the N	/IDL but < RL,	if found, are	e qualified wit	h a "J" flag] .			
Parameter	Result	<u>RL</u>	<u>MDL</u>	DF	<u>Qual</u>	Parameter			Result	<u>RL</u>	MDL	DF	Qual
Acetone	ND	50	25	1		t-1,2-Dichlor	oethene		ND	0.50	0.19	1	
Benzene	ND	0.50	0.094	1		t-1,3-Dichlor	opropene		ND	1.0	0.10	1	
Benzyl Chloride	ND	1.5	0.39	1		Ethylbenzene	e		ND	0.50	0.11	1	
Bromodichloromethane	ND	0.50	0.10	1		4-Ethyltoluer	ne		ND	0.50	0.18	1	
Bromoform	ND	0.50	0.15	1		Hexachloro-1	1,3-Butadier	ne	ND	1.5	0.18	1	
Bromomethane	ND	0.50	0.093	1		2-Hexanone			ND	1.5	0.52	1	
2-Butanone	ND	1.5	0.099	1		Methyl-t-Buty	yl Ether (MT	BE)	ND	2.0	0.12	1	
Carbon Disulfide	ND	10	5.0	1		Methylene C	hloride		ND	5.0	1.0	1	
Carbon Tetrachloride	ND	0.50	0.098	1		4-Methyl-2-P	entanone		ND	1.5	0.15	1	
Chlorobenzene	ND	0.50	0.11	1		o-Xylene			ND	0.50	0.12	1	
Chloroethane	ND	0.50	0.15	1		p/m-Xylene			ND	2.0	0.76	1	
Chloroform	ND	0.50	0.090	1		Styrene			ND	1.5	0.18	1	
Chloromethane	ND	0.50	0.098	1		Tetrachloroe	thene		ND	0.50	0.11	1	
Dibromochloromethane	ND	0.50	0.11	1		Toluene			ND	5.0	2.0	1	
Dichlorodifluoromethane	ND	0.50	0.14	1		Trichloroethe	ene		ND	0.50	0.11	1	
1,1-Dichloroethane	ND	0.50	0.10	1		Trichlorofluo	romethane		ND	1.0	0.077	1	
1,1-Dichloroethene	ND	0.50	0.11	1		1,1,2-Trichlo	oro-1,2,2-Tri	luoroethane	ND	1.5	0.10	1	
1,2-Dibromoethane	ND	0.50	0.11	1		1,1,1-Trichlo	oroethane		ND	0.50	0.10	1	
Dichlorotetrafluoroethane	ND	2.0	0.11	1		1,1,2-Trichlo	oroethane		ND	0.50	0.12	1	
1,2-Dichlorobenzene	ND	0.50	0.11	1		1,3,5-Trimetl	hylbenzene		ND	0.50	0.17	1	
1,2-Dichloroethane	ND	0.50	0.095	1		1,1,2,2-Tetra	achloroethar	e	ND	1.0	0.11	1	
1,2-Dichloropropane	ND	0.50	0.11	1		1,2,4-Trimetl	hylbenzene		ND	1.5	0.33	1	
1,3-Dichlorobenzene	ND	0.50	0.13	1		1,2,4-Trichlo	orobenzene		ND	2.0	0.72	1	
1.4-Dichlorobenzene	ND	0.50	0.13	1		Vinvl Acetate	9		ND	2.0	0.45	1	
c-1,3-Dichloropropene	ND	0.50	0.14	1		Vinyl Chlorid	e		ND	0.50	0.10	1	
c-1,2-Dichloroethene	ND	0.50	0.13	1									
Surrogates:	<u>REC (%)</u>	<u>Control</u> Limits	Qua	<u> </u>		Surrogates:			<u>REC (%)</u>	<u>Contro</u> Limits	<u>y Qı</u>	<u>ual</u>	
1,4-Bromofluorobenzene	104	57-129				1,2-Dichloroe	ethane-d4		102	47-13	7		
Toluene-d8	99	78-156											

MM

Page 8 of 13

CH2M Hill	Date Received:	09/14/10
1000 Wilshire Blvd.	Work Order No:	10-09-1049
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	EPA TO-3M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared:	Date Analyzed:	Duplicate Batch Number
10-09-0984-1	Air	GC 13	N/A	09/14/10	100914D01
Parameter	Sample Conc	DUP Conc	RPD	RPD CL	<u>Qualifiers</u>
TPH as Gasoline	130	140	4	0-20	

RPD - Relative Percent Difference, CL - Control Limit

n M

CH2M Hill	Date Received:	N/A
1000 Wilshire Blvd.	Work Order No:	10-09-1049
21st Floor	Preparation:	N/A
Los Angeles, CA 90017-2417	Method:	ASTM D-1946

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Date Analyze	ed	LCS/LCSD Batc Number	n
099-03-002-1,139	Air	GC 36	N/A	09/14/1	0	100914L01	
Parameter	LCS %R	EC LCSD %	REC <u>%</u>	6REC CL	<u>RPD</u>	RPD CL	Qualifiers
Carbon Dioxide	98	98		80-120	0	0-30	
Oxygen + Argon	90	90		80-120	0	0-30	
Nitrogen	91	90		80-120	0	0-30	

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

CH2M Hill 1000 Wilshire Blvd. 21st Floor Los Angeles, CA 90017-2417

Date Received: Work Order No: Preparation: Method:

N/A 10-09-1049 N/A EPA TO-15M

Project: SFPP - Norwalk Site

Quality Control Sample ID	Matrix	Instrument	Date Prepared	Da Analy	te /zed	LCS/LCSD E Number	Batch
099-12-981-780	Air	GC/MS AA	N/A	09/14/	10	100914L0)1
Parameter	LCS %REC	LCSD %REC	<u>%REC CL</u>	ME CL	<u>RPD</u>	RPD CL	Qualifiers
Benzene	101	99	60-156	44-172	2	0-40	
Carbon Tetrachloride	103	100	64-154	49-169	3	0-32	
1,2-Dibromoethane	104	104	54-144	39-159	1	0-36	
1,2-Dichlorobenzene	126	127	34-160	13-181	1	0-47	
1,2-Dichloroethane	102	100	69-153	55-167	1	0-30	
1,2-Dichloropropane	103	101	67-157	52-172	2	0-35	
1,4-Dichlorobenzene	124	126	36-156	16-176	1	0-47	
c-1,3-Dichloropropene	109	106	61-157	45-173	2	0-35	
Ethylbenzene	102	103	52-154	35-171	1	0-38	
o-Xylene	105	106	52-148	36-164	0	0-38	
p/m-Xylene	100	101	42-156	23-175	0	0-41	
Tetrachloroethene	104	105	56-152	40-168	1	0-40	
Toluene	101	102	56-146	41-161	1	0-43	
Trichloroethene	101	99	63-159	47-175	2	0-34	
1,1,2-Trichloroethane	103	101	65-149	51-163	2	0-37	
Vinyl Chloride	108	110	45-177	23-199	2	0-36	

Total number of LCS compounds : 16

Total number of ME compounds : 0

Total number of ME compounds allowed : 1

LCS ME CL validation result : Pass

n M

RPD - Relative Percent Difference, CL - Control Limit

7440 Lincoln Way, Garden Grove, CA 92841-1427 • TEL:(714) 895-5494 • FAX: (714) 894-7501

hM

Glossary of Terms and Qualifiers

Work Order Number: 10-09-1049

Qualifier *	Definition See applicable analysis comment.
<	Less than the indicated value.
>	Greater than the indicated value.
1	Surrogate compound recovery was out of control due to a required sample dilution, therefore, the sample data was reported without further clarification.
2	Surrogate compound recovery was out of control due to matrix interference. The associated method blank surrogate spike compound was in control and, therefore, the sample data was reported without further clarification.
3	Recovery of the Matrix Spike (MS) or Matrix Spike Duplicate (MSD) compound was out of control due to matrix interference. The associated LCS and/or LCSD was in control and, therefore, the sample data was reported without further clarification.
4	The MS/MSD RPD was out of control due to matrix interference. The LCS/LCSD RPD was in control and, therefore, the sample data was reported without further clarification.
5	The PDS/PDSD or PES/PESD associated with this batch of samples was out of control due to a matrix interference effect. The associated batch LCS/LCSD was in control and, hence, the associated sample data was reported without further clarification.
В	Analyte was present in the associated method blank.
E	Concentration exceeds the calibration range.
J	Analyte was detected at a concentration below the reporting limit and above the laboratory method detection limit. Reported value is estimated.
ME	LCS Recovery Percentage is within LCS ME Control Limit range.
ND	Parameter not detected at the indicated reporting limit.
Q	Spike recovery and RPD control limits do not apply resulting from the parameter concentration in the sample exceeding the spike concentration by a factor of four or greater.
Х	% Recovery and/or RPD out-of-range.
Z	Analyte presence was not confirmed by second column or GC/MS analysis.
	Solid - Unless otherwise indicated, solid sample data is reported on a wet weight basis, not corrected for % moisture.

Calscience	7440 LINCOLN WAY										O	HAIN	OF CUSTOR	Y RECORD
Invironmental	GARDEN GROVE, CA 928	341-1432										ATE:	B-14-6	
aboratories, inc.	TEL: (714) 895-5494 . FAX	(: (714) 894-7	501								đ	AGE:	1 OF	-
LABORATORY CLIENT: Kinder Morgan Energy P	artners, Attn: Steve D	efinboug			5	JENT PR	OJECT NA	VIE / NUME					P.O. NO.:	
1100 Town & Country Ro	bad				₫		- NOC	Valk S					OUOTE NO.	
city:						Jame	s Dye							
Orange, CA 92868	EAY.		E MAIL		<i>w</i>	AMPLER(s): (signe		\angle					الم
714-560-4802	714-560-460	1	ames dye@kir	dermorgan.c	티		4		Ø	\setminus			-1	11014191
			[\$			\backslash		2		REQU	ESTE	D ANA	LYSIS	/
SPECIAL REQUIREMENTS (ADDITIONAL		200	2			\mathbf{F}	ŀ		┢		╞			
RWQCB REPORTING			_		<u>\</u>									
Report to D. Jablonski	/CH2M HILL, cc: KME	<u>م</u>			<u> </u>		(7 H:		·					
Direct Bill KMEP/SFPP "J" flags required/Use	- Steve Defibaugh-re lowest possible dete	.f. AFE# 81 ction limit	195 - all met	thods.		<u></u>	ı, CO2, C							
			ļ	2	30		uob							
		SAMPI	5NG	20	ONT.		A\S							
SAMPLE ID	LOCATION/ DESCRIPTION	DATE		MAT- RIX	<u> </u>	(6-Hd	:O) 9 7 61							
USE USE ONLY					21-OT	T) E-OT	r-Mt2a						Con	iments
(WINF- 09-14	Influent Vapor to SVE	9-14-10	1200	Air	1 X	×	×						Monthly sample	
	ľ													
	1/10 /													
Relinquished by: (Signatúre)				Received	by: (Sign	ature)	NVC	101	Je B	5	2		0/1///b	いう いく
Relinquished by: (Signature)				Received	by: (Sign	ature)							Date:	Time:
Reinquished by: (Signature)				Received	by: (Sign	ature)							Date:	Time:
Revised: 08/06/10														

en l'an an

a dal ca

Ľ

1

			Pag	je 13 of 13
Environmental V	VORK ORDER #	: 10-0	9-[][249
SAMPLE R	ECEIPT FO	RM	Cooler	l of /
CLIENT: KMEP		DATE:	09 /	14/10
TEMPERATURE: Thermometer ID: SC1 (Criteria: 0 Temperature 2 • 2 • C + 0.5 °C (CF) = Image: Sample(s) outside temperature criteria (PM/APM control Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Sample(s) outside temperature criteria but received Image: Samp	0°C – 6.0°C, not froze 2	en)	Sam	nple
Ambient Temperature: Air Filter Met	als Only 🛛 PCBs	Only	Init	ial:
CUSTODY SEALS INTACT: Cooler No (Not Intac Sample No (Not Intac	.t) ☑ Not Present xt) ☑ Not Present	□ N/A	lnit Init	tial: b, C tial: DT
SAMPLE CONDITION: Chain-Of-Custody (COC) document(s) received with COC document(s) received complete Collection date/time, matrix, and/or # of containers logged No analysis requested.	samples	Yes	No	N/A
Sample container label(s) consistent with COC				
Proper containers and sufficient volume for analyses Analyses received within holding time	requested	. Z		
pH / Residual Chlorine / Dissolved Sulfide received v Proper preservation noted on COC or sample contain	<i>i</i> ithin 24 hours ner	🗆		
Volatile analysis container(s) free of headspace Tedlar bag(s) free of condensation		□ .,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		ф С
Solid: 4ozCGJ 8ozCGJ 16ozCGJ Sleev Water: VOA VOAh VOAna2 125AGB 12 500AGB 500AGJ 500AGJs 250AGB 22 250PB 250PBn 125PB 125PBznna 100	re () □EnCore 25AGBh □125AGBp 250CGB □250CGBs PJ □100PJna₂ □	es [®] ⊡Terra > ⊡1AGB s ⊡1PB □_	aCores® [[]1AGB na []500PB []] ₂ □1AGBs]500PBna
Air: ^A Tedlar [®] Summa [®] Other: Container: C: Clear A: Amber P: Plastic G: Glass J: Jar B: Bottle A Preservative: h: HCL n: HNO ₃ na ₂ :Na ₂ S ₂ O ₃ na: NaOH p: H ₃ PO ₄ s	Blank Lot#: Ziploc/Resealable Bag E: H ₂ SO ₄ znna: ZnAc ₂ +NaOH	Labeled : Envelope f: Field-filtered	/Checked b Reviewed b Scanned b	y: <u>D'[</u> by: <u>W/?</u> by: <u>W/?</u>

and in the second fill of the first of the first of the second of the second of the second of the second of the